Commit a5d4a032f6cc55c8817b81e7f617c4df0f354f52
1 parent
be5a830d6d
Exists in
main
added comments, users with less amount of data is removed
Showing 3 changed files with 204 additions and 14 deletions Inline Diff
.vscode/settings.json
View file @
a5d4a03
File was created | 1 | { | ||
2 | "python.formatting.provider": "autopep8", | |||
3 | "python.linting.enabled": false, | |||
4 | "python.analysis.autoImportCompletions": false, | |||
5 | "python.analysis.autoSearchPaths": false, | |||
6 | "python.analysis.useLibraryCodeForTypes": false | |||
7 | } |
python-notebook/data_loading.ipynb
View file @
a5d4a03
{ | 1 | 1 | { | |
"cells": [ | 2 | 2 | "cells": [ | |
{ | 3 | 3 | { | |
"cell_type": "markdown", | 4 | 4 | "cell_type": "markdown", | |
"metadata": {}, | 5 | 5 | "metadata": {}, | |
"source": [ | 6 | 6 | "source": [ | |
"# Loading libraries" | 7 | 7 | "# Loading libraries" | |
] | 8 | 8 | ] | |
}, | 9 | 9 | }, | |
{ | 10 | 10 | { | |
"cell_type": "code", | 11 | 11 | "cell_type": "code", | |
"execution_count": 13, | 12 | 12 | "execution_count": 3, | |
"metadata": {}, | 13 | 13 | "metadata": {}, | |
"outputs": [], | 14 | 14 | "outputs": [], | |
"source": [ | 15 | 15 | "source": [ | |
"import numpy as np\n", | 16 | 16 | "import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | 17 | 17 | "import matplotlib.pyplot as plt\n", | |
18 | "import seaborn as sns\n", | |||
"from pandas import read_csv\n", | 18 | 19 | "from pandas import read_csv\n", | |
20 | "import pandas as pd\n", | |||
"import os\n", | 19 | 21 | "import os\n", | |
"from datetime import datetime" | 20 | 22 | "from datetime import datetime, date\n", | |
23 | "# %load_ext line_profiler" | |||
] | 21 | 24 | ] | |
}, | 22 | 25 | }, | |
{ | 23 | 26 | { | |
"cell_type": "markdown", | 24 | 27 | "cell_type": "markdown", | |
"metadata": {}, | 25 | 28 | "metadata": {}, | |
"source": [ | 26 | 29 | "source": [ | |
30 | "# Defining Functions and Adjusting Settings" | |||
31 | ] | |||
32 | }, | |||
33 | { | |||
34 | "cell_type": "code", | |||
35 | "execution_count": 4, | |||
36 | "metadata": {}, | |||
37 | "outputs": [], | |||
38 | "source": [ | |||
39 | "pd.options.mode.chained_assignment = None\n", | |||
40 | "\n", | |||
41 | "def get_date(x):\n", | |||
42 | " return date(x.year, x.month, x.day)\n", | |||
43 | "\n", | |||
44 | "def get_minute_index(x):\n", | |||
45 | " return (x.hour * 60) + x.minute" | |||
46 | ] | |||
47 | }, | |||
48 | { | |||
49 | "cell_type": "markdown", | |||
50 | "metadata": {}, | |||
51 | "source": [ | |||
"# Loading data files" | 27 | 52 | "# Loading data files" | |
] | 28 | 53 | ] | |
}, | 29 | 54 | }, | |
{ | 30 | 55 | { | |
"cell_type": "code", | 31 | 56 | "cell_type": "code", | |
"execution_count": 16, | 32 | 57 | "execution_count": 5, | |
"metadata": {}, | 33 | 58 | "metadata": {}, | |
"outputs": [], | 34 | 59 | "outputs": [], | |
"source": [ | 35 | 60 | "source": [ | |
"data_dir = '../data'\n", | 36 | 61 | "data_dir = '../data'\n", | |
"\n", | 37 | 62 | "\n", | |
"daily = read_csv(os.path.join(data_dir, 'daily.csv'))\n", | 38 | 63 | "daily = read_csv(os.path.join(data_dir, 'daily.csv'))\n", | |
"dose = read_csv(os.path.join(data_dir, 'dose.csv'))\n", | 39 | 64 | "dose = read_csv(os.path.join(data_dir, 'dose.csv'))\n", | |
"jawbone = read_csv(os.path.join(data_dir, 'jawbone.csv'), low_memory=False)" | 40 | 65 | "jawbone = read_csv(os.path.join(data_dir, 'jawbone.csv'), low_memory=False)\n" | |
] | 41 | 66 | ] | |
}, | 42 | 67 | }, | |
{ | 43 | 68 | { | |
"cell_type": "markdown", | 44 | 69 | "cell_type": "markdown", | |
"metadata": {}, | 45 | 70 | "metadata": {}, | |
"source": [ | 46 | 71 | "source": [ | |
"# Preprocessing" | 47 | 72 | "# Preprocessing\n", | |
73 | "## Picking up the variables" | |||
] | 48 | 74 | ] | |
}, | 49 | 75 | }, | |
{ | 50 | 76 | { | |
"cell_type": "code", | 51 | 77 | "cell_type": "code", | |
"execution_count": 19, | 52 | 78 | "execution_count": 6, | |
"metadata": {}, | 53 | 79 | "metadata": {}, | |
80 | "outputs": [], | |||
81 | "source": [ | |||
82 | "# Column names of jawbone data\n", | |||
83 | "# 'Var1', 'user', 'start_datetime', 'end_datetime', 'timezone', 'userid',\n", | |||
84 | "# 'steps', 'gmtoff', 'tz', 'start_date', 'end_date', 'start_utime',\n", | |||
85 | "# 'end_utime', 'start_udate', 'end_udate', 'intake_date', 'intake_utime',\n", | |||
86 | "# 'intake_tz', 'intake_gmtoff', 'intake_hour', 'intake_min',\n", | |||
87 | "# 'intake_slot', 'travel_start', 'travel_end', 'exit_date',\n", | |||
88 | "# 'dropout_date', 'last_date', 'last_utime', 'last_tz', 'last_gmtoff',\n", | |||
89 | "# 'last_hour', 'last_min', 'start_utime_local', 'end_utime_local'\n", | |||
90 | "\n", | |||
91 | "\n", | |||
92 | "# duplicate jawbone data\n", | |||
93 | "jawbone2 = jawbone.copy(deep=True)\n", | |||
94 | "\n", | |||
95 | "# convert string datetimes to actual datetime objects\n", | |||
96 | "jawbone2[\"start_utime_local\"] = pd.to_datetime(\n", | |||
97 | " jawbone2[\"start_utime_local\"], format=\"%Y-%m-%d %H:%M:%S\")\n", | |||
98 | "jawbone2[\"start_datetime\"] = pd.to_datetime(\n", | |||
99 | " jawbone2[\"start_datetime\"], format=\"%Y-%m-%d %H:%M:%S\")\n", | |||
100 | "\n", | |||
101 | "# calculate the timezone offset\n", | |||
102 | "jawbone2[\"tz_offset\"] = jawbone2[\"start_datetime\"] - \\\n", | |||
103 | " jawbone2[\"start_utime_local\"]\n", | |||
104 | "\n", | |||
105 | "\n", | |||
106 | "# selecting only important columns\n", | |||
107 | "jawbone3 = jawbone2[[\"user\", \"start_utime_local\",\n", | |||
108 | " \"end_utime_local\", \"tz_offset\", \"steps\"]]\n", | |||
109 | "\n", | |||
110 | "# picking up the local date\n", | |||
111 | "jawbone3[\"local_date\"] = jawbone3[\"start_utime_local\"].apply(get_date)\n", | |||
112 | "\n", | |||
113 | "# picking up the local minute index\n", | |||
114 | "jawbone3[\"local_minute_index\"] = jawbone3[\"start_utime_local\"].apply(\n", | |||
115 | " get_minute_index)\n" | |||
116 | ] | |||
117 | }, | |||
118 | { | |||
119 | "cell_type": "markdown", | |||
120 | "metadata": {}, | |||
121 | "source": [ | |||
122 | "## Making a key info database" | |||
123 | ] | |||
124 | }, | |||
125 | { | |||
126 | "cell_type": "code", | |||
127 | "execution_count": 7, | |||
128 | "metadata": {}, | |||
129 | "outputs": [], | |||
130 | "source": [ | |||
131 | "# picking up the user - date data\n", | |||
132 | "user_date = jawbone3[[\"user\", \"local_date\"]].drop_duplicates()" | |||
133 | ] | |||
134 | }, | |||
135 | { | |||
136 | "cell_type": "markdown", | |||
137 | "metadata": {}, | |||
138 | "source": [ | |||
139 | "## Removing users with too small amount of data" | |||
140 | ] | |||
141 | }, | |||
142 | { | |||
143 | "cell_type": "code", | |||
144 | "execution_count": 12, | |||
145 | "metadata": {}, | |||
"outputs": [ | 54 | 146 | "outputs": [ | |
{ | 55 | 147 | { | |
148 | "name": "stdout", | |||
149 | "output_type": "stream", | |||
150 | "text": [ | |||
151 | "Threshold: 10\n", | |||
152 | "Users to be removed:[12, 36, 38]\n", | |||
153 | "Shape Change: 258889 -> 258363 (-526, -0.2%)\n" | |||
154 | ] | |||
155 | }, | |||
156 | { | |||
"data": { | 56 | 157 | "data": { | |
158 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnTUlEQVR4nO3deVxU9d4H8M/gICKbyr4IiBurICDk85SKglqWuOAKKqnMbfG6lfda9z65hluuLbdIrpr6UrNraZikoplZFriQZqCyKJsECciaLL/nDx/ncUJgVGaG4Xzer5evl3POmd/ve84cPhx+c+Y3MiGEABERSYaBrgsgIiLtYvATEUkMg5+ISGIY/EREEsPgJyKSGAY/EZHEMPjbkJdeegkrVqxolbZu3rwJU1NT1NfXAwCGDBmCrVu3tkrbAPDss89ix44drdaeuv75z3/CysoKdnZ2Wu/7Qd988w2cnJx01v/nn3+O7t27w9TUFBcuXGhx+9Z+/Um/yXVdgFS4urqisLAQcrkcHTp0gKenJ6ZPnw6FQgEDg3u/fz/88EO129q6dStCQ0Ob3MbZ2RkVFRWtUvvSpUtx/fp17Nq1S7nsyJEjrdL2o7h58ybWr1+PGzduwMbGRuv9tyWvv/463nvvPYSHh+u6FNJDvOLXoi+//BLl5eW4ceMGFi9ejDVr1mDWrFmt3k9dXV2rt9kW3Lx5E5aWlu0u9B/n9bpx4wa8vLw0UE3bo6vzub3+HAEMfp2wsLDA6NGjsW/fPuzYsQOXL18GAERHR+Of//wnAKC4uBjPP/88unTpgm7duuGZZ55BQ0MDpk2bhps3b+KFF16Aqakp1q5di+zsbMhkMsTHx8PZ2RlDhw5VLnvw5M3IyEBQUBDMzc0RHh6O27dvA3j4sIWrqyuOHz+OxMRExMbGYt++fTA1NYWvry8A1aGDhoYGrFy5Ei4uLrCxscH06dNRVlYGAMo6duzYAWdnZ1hZWeHtt99u8tiUlZVh+vTpsLa2houLC1auXImGhgYcP34cYWFhyM/Ph6mpKaKjoxs99/5+rF+/HjY2NrC3t8e2bduU6/883LF9+3Y8/fTTyscymQwffPABevfuDTMzM/zP//wPMjIy8F//9V8wNzfHxIkTcffuXZU+Y2NjYWVlBVdXV+zevVu5/I8//sDrr78OZ2dn2Nra4qWXXkJ1dbVKnWvWrIGdnR1efPHFRvvS1DH9448/lEN4vr6+6Nmz50OP47Fjx+Du7g4LCwvMmTMHD35APyMjA0OHDoWlpSWsrKwQGRmJ0tJSAMC6deswfvx4lbbmzp2LefPmKY+Zm5sbzMzM0KNHD5V9ftDSpUsRERGBSZMmwczMDP7+/khNTVWuz8/Px/jx42FtbY0ePXpgy5YtjZ4bFRUFc3NzbN++vVH7zb2WQggsWLAANjY2MDc3h4+Pj/Jn7Elfl/aCwa9DQUFBcHJywunTpxutW79+PZycnFBUVITCwkLExsZCJpNh586dcHZ2xpdffomKigr87W9/Uz7n1KlT+PXXX/H1118/tL9PPvkE//73v1FQUAC5XI65c+e2WOPIkSPx5ptvYtKkSaioqFD54b1v+/bt2L59O06ePInMzExUVFRgzpw5Ktt89913SE9PR1JSEpYvX45ff/31of399a9/RVlZGTIzM3Hq1Cl88skn2LZtG0JDQ3HkyBE4ODigoqLioWEAALdu3UJZWRny8vIQHx+PV199FSUlJS3u531ff/01zp07h7Nnz2Lt2rVQKBTYtWsXcnJycPnyZezZs0elr+LiYuTl5WHHjh1QKBRIT08HACxevBhXr17FxYsXcf36deTl5WH58uUqz719+zZu3LiBuLg4tY+pkZGRcggvNTUVGRkZjZ5bXFyMcePGYeXKlSguLkbPnj1x5swZ5XohBN544w3k5+fj119/RU5ODpYuXQoAiIqKQmJiovIXQV1dHfbu3Yvp06ejsrISc+fOxZEjR1BeXo7vv/8efn5+TR7LgwcPYsKECbh9+zamTp2KMWPGoLa2Fg0NDXjhhRfg6+uLvLw8JCUlYdOmTSrn7cGDBxEREYHS0lJERka2/MI94OjRo/j2229x9epVlJWV4dNPP4WlpSWAJ39d2gsGv445ODgor7wfZGhoiIKCAty4cQOGhoZ45plnIJPJmm1r6dKlMDExgbGx8UPXT5s2Dd7e3jAxMcGKFSvw6aefKt/8fRK7d+/GwoUL4ebmBlNTU6xatQp79+5V+WtjyZIlMDY2hq+vL3x9fR/6C6S+vh579+7FqlWrYGZmBldXV7z22mvYuXOn2rUYGhrirbfegqGhIZ577jmYmpoqw1gdf/vb32Bubg4vLy94e3tj+PDhcHNzg4WFBZ599tlGb6SuWLECRkZGGDx4MEaNGoVPP/0UQgjExcVh48aN6NatG8zMzPDmm29i7969yucZGBhg2bJlMDIyeujrpc4xbcpXX30FLy8vREREwNDQEPPnz1d5M7xXr14ICwuDkZERrK2tsXDhQpw6dQoAYG9vj0GDBmH//v0AgMTERFhZWSEgIEBZ9+XLl1FdXQ17e/tmh5sCAgKUNSxcuBA1NTU4e/YskpOTUVRUhLfeegsdO3aEm5sbYmJiVI7PwIEDMWbMGBgYGDR5PjfF0NAQ5eXlSEtLgxACHh4esLe3b5XXpb1g8OtYXl4eunXr1mj5okWL0KtXL2XwrF69usW2unfvrvZ6FxcX1NbWori4+NGL/pP8/Hy4uLiotF1XV4fCwkLlsgeDp3Pnzg9947m4uBi1tbWN2srLy1O7FktLS8jl/3/PQlN9NcXW1lb5f2Nj40aPH2yra9euMDExUak1Pz8fRUVFqKqqQkBAALp06YIuXbpg5MiRKCoqUm5rbW2NTp06NVmHOse0uec++FrLZDKVx4WFhZg8eTIcHR1hbm6OqKgolfNgxowZyjfyd+3ahWnTpgEATExMsG/fPnz44Yewt7fHqFGjkJaW1mQdD/ZpYGAAJycn5Ofn48aNG8jPz1cemy5duiA2NlZl31o6l5szdOhQzJkzB6+++ipsbGygUChw586dVnld2gsGvw4lJycjLy9PZZz5PjMzM6xfvx6ZmZk4dOgQNmzYgKSkJABo8sq/pb8IcnJylP+/efMmDA0NYWVlBRMTE1RVVSnX1dfXq/wwtNSug4MDbty4odK2XC5XCU11WFlZwdDQsFFbjo6Oj9ROU/68n7du3Xqi9kpKSlBZWal8fPPmTTg4OMDKygrGxsb45ZdfUFpaitLSUpSVlan80tDkMbW3t1d5rYUQKo/ffPNNyGQyXLp0CXfu3MGuXbtU3gMYM2YMfv75Z1y+fBkJCQkqQy0jRozAsWPHUFBQAHd3d8TExDRZx4N9NjQ0IDc3Fw4ODujevTt69OihPDalpaUoLy/HV199pdy+pePT0ms5d+5cnDt3DleuXMHVq1exbt26Vnld2gsGvw7cuXMHCQkJmDx5MqKiouDj49Nom4SEBFy/fh1CCFhYWKBDhw7K2z5tbW2RmZn5yP3u2rULV65cQVVVFd566y1ERESgQ4cO6NOnD2pqanD48GHU1tZi5cqV+OOPP5TPs7W1RXZ2NhoaGh7a7pQpU7Bx40ZkZWWhoqJC+Z7Ag1fe6ujQoQMmTpyIf/zjH8q7nzZs2ICoqKhH3teH8fPzw4EDB1BVVYXr168jPj7+idtcsmQJ7t69i9OnTyMhIQETJkyAgYEBYmJisGDBAvz2228A7v1l19R7Lw/zJMd01KhR+OWXX3DgwAHU1dVhy5YtKsFYXl4OU1NTWFhYIC8vD+vWrVN5fqdOnRAREYGpU6ciKCgIzs7OAO79pXDw4EFUVlbCyMgIpqamynPyYc6dO6esYdOmTTAyMsJTTz2FoKAgmJmZYc2aNaiurkZ9fT0uX76M5ORktY9Pc69lcnIyfvzxR9TW1sLExASdOnWCgYFBq7wu7QWDX4teeOEFmJmZoXv37nj77bexcOFClbtOHnTt2jWEhobC1NQUAwcOxCuvvIKQkBAAwBtvvIGVK1eiS5cueOedd9Tuf9q0aYiOjoadnR1qamqUd1JYWFjggw8+wOzZs+Ho6AgTExOVu3wmTJgA4N4wir+/f6N2Z86ciWnTpmHQoEHo0aMHOnXqhHfffVftuh707rvvwsTEBG5ubnj66acxdepUzJw587Ha+rMFCxagY8eOsLW1xYwZMx75TcM/s7OzQ9euXeHg4IDIyEh8+OGHcHd3BwCsWbMGvXr1wlNPPQVzc3OEhoY+0nsNT3JMrayssH//fixevBiWlpa4du0a/vu//1u5fsmSJTh//jwsLCwwatQojBs3rlEbM2bMwKVLl5TDPMC9q/YNGzbAwcEB3bp1w6lTp/Cvf/2ryTrCw8Oxb98+dO3aFTt37sSBAwdgaGiIDh06ICEhARcvXkSPHj1gZWWF2bNnK+8EU0dzr+WdO3cQExODrl27wsXFBZaWlli0aBGAJ39d2gsZv4iFiP7s5s2bcHd3x61bt2Bubv7Iz3/Yh/6o7eAVPxGpuH9lP3ny5McKfWr7OGUDESlVVlbC1tYWLi4uSExM1HU5pCEc6iEikhgO9RARSYxeDPXcnwuFiIjUl52d/dAPaepF8Lu6uiIlJUXXZRAR6ZXAwMCHLudQDxGRxDD4iYgkhsFPRCQxDH4iIolh8BMRSQyDn4hIYjQW/DNnzoSNjQ28vb0brVu/fj1kMlmrfAkIERE9Go0Ff3R09EPn+sjJycHRo0eVc3wTEZF2aSz4Bw0a9NCvFFywYAHWrl0rmW+6ISJqa7T6yd2DBw/C0dERvr6+LW4bFxen/Jb7B78GkIhaj19gMAoKCprdxt7eHhdTftRSRaQNWgv+qqoqxMbG4ujRo2ptr1AooFAoADT9sWMiejIFBQUIWbKv2W1OLpukpWpIW7R2V09GRgaysrLg6+sLV1dX5Obmwt/f/4m/8JqIiB6N1q74fXx8lF9wDPz/xGtWVlbaKoGIiKDBK/4pU6Zg4MCBSE9Ph5OTE+Lj4zXVFRERPQKNXfHv2bOn2fXZ2dma6pqIiJrBT+4SEUkMg5+ISGIY/EREEsPgJyKSGAY/EZHEMPiJiCSGwU9EJDEMfiIiiWHwExFJDIOfiEhiGPxERBLD4CcikhgGPxGRxDD4iYgkhsFPRCQxDH4iIolh8BMRSQyDn4hIYhj8REQSw+AnIpIYjQX/zJkzYWNjA29vb+WyRYsWwd3dHf369cPYsWNRWlqqqe6JiKgJGgv+6OhoJCYmqiwLCwvD5cuX8fPPP6NPnz5YtWqVpronIqImaCz4Bw0ahG7duqksGz58OORyOQDgqaeeQm5urqa6JyKiJuhsjP/f//43nn322SbXx8XFITAwEIGBgSgqKtJiZURE7ZtOgv/tt9+GXC5HZGRkk9soFAqkpKQgJSUF1tbWWqyOiKh9k2u7w+3btyMhIQFJSUmQyWTa7p6ISPK0GvyJiYlYu3YtTp06hc6dO2uzayIi+j8aG+qZMmUKBg4ciPT0dDg5OSE+Ph5z5sxBeXk5wsLC4Ofnh5deeklT3RMRURM0dsW/Z8+eRstmzZqlqe6IiEhN/OQuEZHEMPiJiCSGwU9EJDEMfiIiiWHwExFJDIOfiEhiGPxERBLD4CcikhgGPxGRxDD4iYgkhsFPRCQxDH4iIolh8BMRSQyDn4hIYhj8REQSw+AnIpIYBj8RkcQw+ImIJIbBT0QkMQx+IiKJYfATEUmMxoJ/5syZsLGxgbe3t3LZ7du3ERYWht69eyMsLAwlJSWa6p6IiJqgseCPjo5GYmKiyrLVq1dj2LBhuHbtGoYNG4bVq1drqnsiImqCxoJ/0KBB6Natm8qygwcPYsaMGQCAGTNm4IsvvtBU90RE1AS5NjsrLCyEvb09AMDOzg6FhYVNbhsXF4e4uDgAQFFRkVbqIyKSAp29uSuTySCTyZpcr1AokJKSgpSUFFhbW2uxMiKi9k2rwW9ra4uCggIAQEFBAWxsbLTZPRERQcvBP3r0aOzYsQMAsGPHDoSHh2uzeyIiggaDf8qUKRg4cCDS09Ph5OSE+Ph4LF68GMeOHUPv3r1x/PhxLF68WFPdExFREzT25u6ePXseujwpKUlTXRIRkRr4yV0iIolh8BMRSQyDn4hIYhj8REQSw+AnIpIYBj8RkcQw+ImIJIbBT0QkMQx+IiKJYfATEUmMWsF/6dIlTddBRERaolbwv/LKKwgKCsIHH3yAsrIyTddEREQapFbwnz59Grt370ZOTg4CAgIwdepUHDt2TNO1ERGRBqg9xt+7d2+sXLkSa9aswalTpzB37ly4u7vjwIEDmqyPiIhamVrB//PPP2PBggXw8PDAiRMn8OWXX+LXX3/FiRMnsGDBAk3XSERErUit+fj/+te/Yvbs2YiNjYWxsbFyuYODA1auXKmx4oiIqPWpFfyHDx+GsbExOnToAABoaGhATU0NOnfujGnTpmm0QCIial1qDfWEhoaiurpa+biqqgqhoaEaK4qIiDRHreCvqamBqamp8rGpqSmqqqo0VhQREWmOWsFvYmKC8+fPKx+fO3dOZayfiIj0h1pj/Js2bcKECRPg4OAAIQRu3bqFffv2PXanGzduxNatWyGTyeDj44Nt27ahU6dOj90eERGpT63gHzBgANLS0pCeng4A6Nu3LwwNDR+rw7y8PGzZsgVXrlyBsbExJk6ciL179yI6Ovqx2iMiokejVvADQHJyMrKzs1FXV6cc9pk+ffpjdVpXV4fq6moYGhqiqqoKDg4Oj9UOERE9OrWCf9q0acjIyICfn5/ylk6ZTPZYwe/o6IjXX38dzs7OMDY2xvDhwzF8+PBG28XFxSEuLg4AUFRU9Mj9EBHRw6kV/CkpKbhy5QpkMtkTd1hSUoKDBw8iKysLXbp0wYQJE7Br1y5ERUWpbKdQKKBQKAAAgYGBT9wvERHdo9ZdPd7e3rh161ardHj8+HH06NED1tbWMDQ0xLhx4/D999+3SttERNQyta74i4uL4enpiaCgIBgZGSmXHzp06JE7dHZ2xtmzZ1FVVQVjY2MkJSXxip6ISIvUCv6lS5e2WofBwcGIiIiAv78/5HI5+vfvrxzSISIizVMr+AcPHowbN27g2rVrCA0NRVVVFerr6x+702XLlmHZsmWP/XwiInp8ao3xf/zxx4iIiMBf/vIXAPfuxR8zZowm6yIiIg1RK/jff/99nDlzBubm5gDufSnLb7/9ptHCiIhIM9QKfiMjI3Ts2FH5uK6urlVu7SQiIu1TK/gHDx6M2NhYVFdX49ixY5gwYQJeeOEFTddGREQaoFbwr169GtbW1vDx8cFHH32E5557jt+8RUSkp9S6q8fAwAAxMTGIiYnRdD1ERKRhagV/jx49Hjqmn5mZ2eoFERGRZqk9V899NTU12L9/P27fvq2xooiISHPUGuO3tLRU/nN0dMT8+fNx+PBhTddGREQaoNYV/4Nfu9jQ0ICUlBTU1dVprCgiajtKSkpg6+jc7Db29va4mPKjliqiJ6VW8L/22mv//wS5HK6urvj00081VhQRtR0NDQIhS5r/qtWTyyZpqRpqDWoF/8mTJzVdBxERaYlawb9hw4Zm1y9cuLBViiEiIs1T+66e5ORkjB49GgDw5ZdfIigoCL1799ZocURE1PrUCv7c3FycP38eZmZmAO7Nzz9q1Cjs2rVLo8UREVHrU+t2zsLCQpVJ2jp27IjCwkKNFUVERJqj1hX/9OnTERQUhLFjxwIAvvjiC8yYMUOjhRERkWaoFfz/+Mc/8Oyzz+L06dMAgG3btqF///4aLYyIiDRDraEeAKiqqoK5uTnmzZsHJycnZGVlabIuIiLSELWCf9myZVizZg1WrVoFAKitrUVUVJRGCyMiIs1QK/g///xzHDp0CCYmJgAABwcHlJeXa7QwIiLSDLWCv2PHjpDJZMqpmSsrK5+o09LSUkRERMDd3R0eHh744Ycfnqg9IiJSn1rBP3HiRPzlL39BaWkpPv74Y4SGhj7Rl7LMmzcPI0eORFpaGlJTU+Hh4fHYbRER0aNp8a4eIQQmTZqEtLQ0mJubIz09HcuXL0dYWNhjdVhWVoZvv/0W27dvB3Dvr4kHPyNARESa1WLwy2QyPPfcc7h06dJjh/2DsrKyYG1tjRdffBGpqakICAjA5s2ble8f3BcXF4e4uDgAQFFR0RP3S0RE96g11OPv74/k5ORW6bCurg7nz5/Hyy+/jAsXLsDExASrV69utJ1CoUBKSgpSUlJgbW3dKn0TEZGawf/jjz/iqaeeQs+ePdGvXz/4+PigX79+j9Whk5MTnJycEBwcDACIiIhQ+aIXIiLSrGaHem7evAlnZ2d8/fXXrdahnZ0dunfvjvT0dPTt2xdJSUnw9PRstfaJiKh5zQb/mDFjcP78ebi4uGD8+PH4z3/+0yqdvvvuu4iMjMTdu3fh5uaGbdu2tUq7RETUsmaDXwih/H9mZmardern54eUlJRWa4+IiNTX7Bj//Q9s/fn/RESkv5q94k9NTYW5uTmEEKiuroa5uTmAe38JyGQy3LlzRytFEhFR62k2+Ovr67VVBxERaYna0zITEVH7wOAnIpIYBj8RkcQw+ImIJIbBT0QkMQx+IiKJYfATEUkMg5+ISGIY/EREEsPgJyKSGAY/EZHEMPiJiCSGwU9EJDEMfiIiiWHwExFJDIOfiEhiGPxERBKjs+Cvr69H//798fzzz+uqBCIiSdJZ8G/evBkeHh666p6ISLJ0Evy5ubk4fPgwZs+erYvuiYgkTSfBP3/+fKxduxYGBnyLgYhI2+Ta7jAhIQE2NjYICAjAN9980+R2cXFxiIuLAwAUFRVpqToiehwlJSWwdXRucr29vT0upvyoxYqoOVoP/jNnzuDQoUP46quvUFNTgzt37iAqKgq7du1S2U6hUEChUAAAAgMDtV0mET2ChgaBkCX7mlx/ctkkLVZDLdH6WMuqVauQm5uL7Oxs7N27F0OHDm0U+kREpDkcZCcikhitD/U8aMiQIRgyZIguSyAikhxe8RMRSQyDn4hIYhj8REQSw+AnIpIYBj8RkcQw+ImIJIbBT0QkMQx+IiKJYfATEUmMTj+5S0R0n19gMAoKCprdhrN8tg4GPxG1CQUFBc3O8Alwls/WwqEeIiKJYfATEUkMg5+ISGIY/EREEsPgJyKSGAY/EZHEMPiJiCSGwU9EJDEMfiIiiWHwExFJjNaDPycnByEhIfD09ISXlxc2b96s7RKIiCRN63P1yOVyrF+/Hv7+/igvL0dAQADCwsLg6emp7VKIiCRJ61f89vb28Pf3BwCYmZnBw8MDeXl52i6DiEiydDo7Z3Z2Ni5cuIDg4OBG6+Li4hAXFwcAKCoqeuw+ONUrke6VlJTA1tG5+W1KS7VTTBuiq3zSWfBXVFRg/Pjx2LRpE8zNzRutVygUUCgUAIDAwMDH7odTvRLpXkODaPHn8LO5YVqqpu3QVT7p5K6e2tpajB8/HpGRkRg3bpwuSiAikiytB78QArNmzYKHhwcWLlyo7e6JiCRP68F/5swZ7Ny5EydOnICfnx/8/Pzw1VdfabsMIiLJ0voY/9NPPw0hhLa7JSKi/8NP7hIRSQyDn4hIYhj8REQSw+AnIpIYBj8RkcQw+ImIJIbBT0QkMQx+IiKJYfATEUmMTqdl1ictTZ+qramdW2sa17ayP9rU0j6XV1TAzNS02TZa49i2pX70bSrklqZ3bo/nrSYw+NXU0vSp2praubWmcW0r+6NNLe3zZ3PDELJO88e2LfWjb1MhtzS9c3s8bzWBQz1ERBLD4CcikhgGPxGRxDD4iYgkhsFPRCQxDH4iIolh8BMRSQyDn4hIYhj8REQSw+AnIpIYnQR/YmIi+vbti169emH16tW6KIGISLK0Hvz19fV49dVXceTIEVy5cgV79uzBlStXtF0GEZFkaT34f/rpJ/Tq1Qtubm7o2LEjJk+ejIMHD2q7DCIiyZIJIYQ2O/zss8+QmJiIrVu3AgB27tyJH3/8Ee+9957KdnFxcYiLiwMApKWlwd3dvcW2i4qKYG1t3fpFa5G+7wPr1z193wfW33qys7NRXFzcaHmbnZZZoVBAoVA80nMCAwORkpKioYq0Q9/3gfXrnr7vA+vXPK0P9Tg6OiInJ0f5ODc3F46Ojtoug4hIsrQe/AMGDMC1a9eQlZWFu3fvYu/evRg9erS2yyAikiytD/XI5XK89957GDFiBOrr6zFz5kx4eXm1StuPOjTUFun7PrB+3dP3fWD9mqf1N3eJiEi3+MldIiKJYfATEUlMuwl+fZsGYubMmbCxsYG3t7dy2e3btxEWFobevXsjLCwMJSUlOqyweTk5OQgJCYGnpye8vLywefNmAPq1DzU1NQgKCoKvry+8vLywZMkSAEBWVhaCg4PRq1cvTJo0CXfv3tVxpc2rr69H//798fzzzwPQr/pdXV3h4+MDPz8/BAYGAtCvcwgASktLERERAXd3d3h4eOCHH35o8/vQLoJfH6eBiI6ORmJiosqy1atXY9iwYbh27RqGDRvWpn+ByeVyrF+/HleuXMHZs2fx/vvv48qVK3q1D0ZGRjhx4gRSU1Nx8eJFJCYm4uzZs/j73/+OBQsW4Pr16+jatSvi4+N1XWqzNm/eDA8PD+Vjfav/5MmTuHjxovLed306hwBg3rx5GDlyJNLS0pCamgoPD4+2vw+iHfj+++/F8OHDlY9jY2NFbGysDitST1ZWlvDy8lI+7tOnj8jPzxdCCJGfny/69Omjq9Ie2ejRo8XRo0f1dh8qKytF//79xdmzZ4WlpaWora0VQjQ+t9qanJwcMXToUJGUlCRGjRolGhoa9Kp+FxcXUVRUpLJMn86h0tJS4erqKhoaGlSWt/V9aBdX/Hl5eejevbvysZOTE/Ly8nRY0eMpLCyEvb09AMDOzg6FhYU6rkg92dnZuHDhAoKDg/VuH+rr6+Hn5wcbGxuEhYWhZ8+e6NKlC+Tye3c6t/Vzaf78+Vi7di0MDO79KP/+++96Vb9MJsPw4cMREBCgnKJFn86hrKwsWFtb48UXX0T//v0xe/ZsVFZWtvl9aBfB3x7JZDLIZDJdl9GiiooKjB8/Hps2bYK5ubnKOn3Yhw4dOuDixYvIzc3FTz/9hLS0NF2XpLaEhATY2NggICBA16U8tu+++w7nz5/HkSNH8P777+Pbb79VWd/Wz6G6ujqcP38eL7/8Mi5cuAATE5NGwzptcR/aRfC3l2kgbG1tUVBQAAAoKCiAjY2NjitqXm1tLcaPH4/IyEiMGzcOgP7tw31dunRBSEgIfvjhB5SWlqKurg5A2z6Xzpw5g0OHDsHV1RWTJ0/GiRMnMG/ePL2pH4CyNhsbG4wdOxY//fSTXp1DTk5OcHJyQnBwMAAgIiIC58+fb/P70C6Cv71MAzF69Gjs2LEDALBjxw6Eh4fruKKmCSEwa9YseHh4YOHChcrl+rQPRUVFKC0tBQBUV1fj2LFj8PDwQEhICD777DMAbXsfVq1ahdzcXGRnZ2Pv3r0YOnQodu/erTf1V1ZWory8XPn/o0ePwtvbW6/OITs7O3Tv3h3p6ekAgKSkJHh6erb9fdD1mwyt5fDhw6J3797Czc1NrFy5UtfltGjy5MnCzs5OyOVy4ejoKLZu3SqKi4vF0KFDRa9evcSwYcPE77//rusym3T69GkBQPj4+AhfX1/h6+srDh8+rFf7kJqaKvz8/ISPj4/w8vISy5YtE0IIkZGRIQYMGCB69uwpIiIiRE1NjY4rbdnJkyfFqFGjhBD6U39GRobo16+f6Nevn/D09FT+3OrTOSSEEBcuXBABAQHCx8dHhIeHi9u3b7f5feCUDUREEtMuhnqIiEh9DH4iIolh8BMRSQyDn4hIYhj8REQSw+AnvSCTyfDaa68pH7/zzjtYunRpq7QdHR2tvO9dk/bv36/8nEBbqIeki8FPesHIyAgHDhxAcXGxrktRcf8TsuqIj4/Hxx9/jJMnT2qwIqKWMfhJL8jlcigUCmzcuLHRuj9fIZuamgIAvvnmGwwePBjh4eFwc3PD4sWLsXv3bgQFBcHHxwcZGRnK5xw/fhyBgYHo06cPEhISANybwG3RokUYMGAA+vXrh48++kjZ7jPPPIPRo0fD09OzUT179uyBj48PvL298fe//x0AsHz5cnz33XeYNWsWFi1apLK9EAJz5sxB3759ERoait9++025bvny5RgwYAC8vb2hUCgghEBGRgb8/f2V21y7dk35ePHixfD09ES/fv3w+uuvP9pBJunQ7efHiNRjYmIiysrKhIuLiygtLRXr1q0TS5YsEUIIMWPGDLF//36VbYW492lWCwsLkZ+fL2pqaoSDg4N46623hBBCbNq0ScybN0/5/BEjRoj6+npx9epV4ejoKKqrq8VHH30kVqxYIYQQoqamRgQEBIjMzExx8uRJ0blzZ5GZmdmozry8PNG9e3fx22+/idraWhESEiI+//xzIYQQgwcPFsnJyY2e85///EeEhoaKuro6kZeXJywsLJT78+AnPqOiosShQ4eEEEIMGTJEXLhwQQghxBtvvCG2bNkiiouLRZ8+fZRTBJeUlDzGkSYp4BU/6Q1zc3NMnz4dW7ZsUfs5AwYMgL29PYyMjNCzZ08MHz4cAODj44Ps7GzldhMnToSBgQF69+4NNzc3pKWl4ejRo/jkk0/g5+eH4OBg/P7777h27RoAICgoCD169GjUX3JyMoYMGQJra2vI5XJERkY2mnHyz7799ltMmTIFHTp0gIODA4YOHapcd/LkSQQHB8PHxwcnTpzAL7/8AgCYPXs2tm3bhvr6euzbtw9Tp06FhYUFOnXqhFmzZuHAgQPo3Lmz2seJpIXBT3pl/vz5iI+PR2VlpXKZXC5HQ0MDAKChoUHlqwaNjIyU/zcwMFA+NjAwUBmf//O0uTKZDEIIvPvuu7h48SIuXryIrKws5S8OExOT1t+5P6mpqcErr7yCzz77DJcuXUJMTAxqamoAAOPHj8eRI0eQkJCAgIAAWFpaQi6X46effkJERAQSEhIwcuRIjddI+onBT3qlW7dumDhxosrXCbq6uuLcuXMAgEOHDqG2tvaR292/fz8aGhqQkZGBzMxM9O3bFyNGjMC//vUvZXtXr15V+YXzMEFBQTh16hSKi4tRX1+PPXv2YPDgwc0+Z9CgQdi3bx/q6+tRUFCgfPP3fshbWVmhoqJC5X2MTp06YcSIEXj55Zfx4osvArj33QhlZWV47rnnsHHjRqSmpj7ycSBpkOu6AKJH9dprr+G9995TPo6JiUF4eDh8fX0xcuTIx7oad3Z2RlBQEO7cuYMPP/wQnTp1wuzZs5GdnQ1/f38IIWBtbY0vvvii2Xbs7e2xevVqhISEQAiBUaNGtTgl79ixY3HixAl4enrC2dkZAwcOBHDvOwJiYmLg7e0NOzs7DBgwQOV5kZGR+Pzzz5V/hZSXlyM8PBw1NTUQQmDDhg2PfBxIGjg7J5Geeuedd1BWVoYVK1bouhTSM7ziJ9JDY8eORUZGBk6cOKHrUkgP8YqfiEhi+OYuEZHEMPiJiCSGwU9EJDEMfiIiiWHwExFJzP8CkWQEIHluKswAAAAASUVORK5CYII=", | |||
"text/plain": [ | 57 | 159 | "text/plain": [ | |
"0 1\n", | 58 | 160 | "<Figure size 432x288 with 1 Axes>" | |
"1 1\n", | 59 | |||
"2 1\n", | 60 | |||
"3 1\n", | 61 | |||
"4 1\n", | 62 | |||
"Name: user, dtype: int64" | 63 | |||
] | 64 | 161 | ] | |
}, | 65 | 162 | }, | |
"execution_count": 19, | 66 | |||
"metadata": {}, | 67 | 163 | "metadata": {}, | |
"output_type": "execute_result" | 68 | 164 | "output_type": "display_data" | |
} | 69 | 165 | } | |
], | 70 | 166 | ], | |
167 | "source": [ | |||
168 | "# making a stat of the number of days per user\n", | |||
169 | "stat_user = user_date.groupby(['user'])['local_date'].nunique().sort_values()\n", | |||
170 | "\n", | |||
171 | "ax = plt.figure()\n", | |||
172 | "ax.patch.set_facecolor('white')\n", | |||
173 | "ax = sns.histplot(stat_user)\n", | |||
174 | "ax.set_title('Distribution of number of days per user')\n", | |||
175 | "ax.set_xlabel('Number of days')\n", | |||
176 | "ax.set_ylabel('Frequency')\n", | |||
177 | "\n", | |||
178 | "# cut off values that are not in the range of the data\n", | |||
179 | "THRESHOLD_OF_DAYS_PER_USER = 10\n", | |||
180 | "\n", | |||
181 | "# filter out users that have less days of data than THRESHOLD_OF_DAYS_PER_USER\n", | |||
182 | "users_to_be_removed = stat_user[stat_user < THRESHOLD_OF_DAYS_PER_USER].index\n", | |||
183 | "\n", | |||
184 | "print(\"Threshold: {}\".format(THRESHOLD_OF_DAYS_PER_USER))\n", | |||
185 | "print(\"Users to be removed:{}\".format(list(users_to_be_removed)))\n", | |||
186 | "\n", | |||
187 | "jawbone4 = jawbone3[~jawbone3[\"user\"].isin(users_to_be_removed)]\n", | |||
188 | "\n", | |||
189 | "\n", | |||
190 | "# printing the amount of data removed\n", | |||
191 | "jawbone3_count, _ = jawbone3.shape\n", | |||
192 | "jawbone4_count, _ = jawbone4.shape\n", | |||
193 | "\n", | |||
194 | "print(\"Shape Change: {} -> {} (-{}, -{}%)\".format(\n", | |||
195 | " jawbone3_count, \n", | |||
196 | " jawbone4_count, \n", | |||
197 | " jawbone3_count - jawbone4_count, \n", | |||
198 | " round((jawbone3_count - jawbone4_count) / jawbone3_count * 100, 2)\n", | |||
199 | " )\n", | |||
200 | ")" | |||
201 | ] | |||
202 | }, | |||
203 | { | |||
204 | "cell_type": "code", | |||
205 | "execution_count": null, | |||
206 | "metadata": {}, | |||
207 | "outputs": [ | |||
208 | { | |||
209 | "ename": "NameError", | |||
210 | "evalue": "name 'users' is not defined", | |||
211 | "output_type": "error", | |||
212 | "traceback": [ | |||
213 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |||
214 | "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", | |||
215 | "\u001b[0;32m/var/folders/m6/l3x11zj94l3dp3wnxy1vnscc0000gn/T/ipykernel_50945/4152346818.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mstandard_minute_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSeries\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"local_minute_index\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1440\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0ma_user\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0musers\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0ma_date\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0muser_date2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlocal_date\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |||
216 | "\u001b[0;31mNameError\u001b[0m: name 'users' is not defined" | |||
217 | ] | |||
218 | } | |||
219 | ], | |||
220 | "source": [ | |||
221 | "standard_minute_index = pd.Series(name=\"local_minute_index\", data=np.arange(0, 1440, 1))\n", | |||
222 | "\n", | |||
223 | "a_user = users[0]\n", | |||
224 | "a_date = user_date2.local_date[0]\n", | |||
225 | "\n", | |||
226 | "a_jawbone3 = jawbone3.loc[(jawbone3.user == a_user) & (jawbone3.local_date == a_date), :]\n", | |||
227 | "\n", | |||
228 | "vec = a_jawbone3[[\"local_minute_index\", \"steps\"]]\n", | |||
229 | "\n", | |||
230 | "steps = [0] * 1440\n", | |||
231 | "\n", | |||
232 | "for index, row in vec.iterrows():\n", | |||
233 | " steps[row.local_minute_index] += row.steps\n", | |||
234 | "\n", | |||
235 | "print(steps)\n", | |||
236 | "steps_series = pd.Series(name=\"steps\", data=steps)\n", | |||
237 | "steps_series[\"over60\"] = (steps_series > 60) * 1\n", | |||
238 | "\n", | |||
239 | "steps_series[\"roll\"] = steps_series.rolling(window=5, min_periods=1).sum()\n", | |||
240 | "\n", | |||
241 | "steps_series.roll.plot()\n", | |||
242 | "\n", | |||
243 | "\n" | |||
244 | ] | |||
245 | }, | |||
246 | { | |||
247 | "cell_type": "code", | |||
248 | "execution_count": null, | |||
249 | "metadata": {}, | |||
250 | "outputs": [], | |||
"source": [] | 71 | 251 | "source": [] | |
} | 72 | 252 | } | |
], | 73 | 253 | ], | |
"metadata": { | 74 | 254 | "metadata": { | |
"interpreter": { | 75 | 255 | "interpreter": { | |
"hash": "80dbe1014b4652684caa329d41db00af3ae439be86b11eab7e35b518e5d8ab1a" | 76 | 256 | "hash": "80dbe1014b4652684caa329d41db00af3ae439be86b11eab7e35b518e5d8ab1a" | |
}, | 77 | 257 | }, | |
"kernelspec": { | 78 | 258 | "kernelspec": { | |
"display_name": "Python 3.7.9 64-bit ('venv': venv)", | 79 | 259 | "display_name": "Python 3.7.9 64-bit ('venv': venv)", | |
"language": "python", | 80 | 260 | "language": "python", | |
"name": "python3" | 81 | 261 | "name": "python3" | |
}, | 82 | 262 | }, | |
"language_info": { | 83 | 263 | "language_info": { | |
"codemirror_mode": { | 84 | 264 | "codemirror_mode": { | |
"name": "ipython", | 85 | 265 | "name": "ipython", | |
"version": 3 | 86 | 266 | "version": 3 | |
}, | 87 | 267 | }, | |
"file_extension": ".py", | 88 | 268 | "file_extension": ".py", | |
"mimetype": "text/x-python", | 89 | 269 | "mimetype": "text/x-python", | |
"name": "python", | 90 | 270 | "name": "python", | |
"nbconvert_exporter": "python", | 91 | 271 | "nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | 92 | 272 | "pygments_lexer": "ipython3", | |
"version": "3.7.9" | 93 | 273 | "version": "3.7.9" | |
}, | 94 | 274 | }, | |
"orig_nbformat": 4 | 95 | 275 | "orig_nbformat": 4 | |
}, | 96 | 276 | }, | |
"nbformat": 4, | 97 | 277 | "nbformat": 4, | |
"nbformat_minor": 2 | 98 | 278 | "nbformat_minor": 2 | |
} | 99 | 279 | } | |
100 | 280 | |||
requirements.txt
View file @
a5d4a03
absl-py==1.0.0 | 1 | 1 | absl-py==1.0.0 | |
appnope==0.1.2 | 2 | 2 | appnope==0.1.2 | |
astunparse==1.6.3 | 3 | 3 | astunparse==1.6.3 | |
backcall==0.2.0 | 4 | 4 | backcall==0.2.0 | |
cached-property==1.5.2 | 5 | 5 | cached-property==1.5.2 | |
cachetools==4.2.4 | 6 | 6 | cachetools==4.2.4 | |
certifi==2021.10.8 | 7 | 7 | certifi==2021.10.8 | |
charset-normalizer==2.0.10 | 8 | 8 | charset-normalizer==2.0.10 | |
cycler==0.11.0 | 9 | 9 | cycler==0.11.0 | |
debugpy==1.5.1 | 10 | 10 | debugpy==1.5.1 | |
decorator==5.1.1 | 11 | 11 | decorator==5.1.1 | |
entrypoints==0.3 | 12 | 12 | entrypoints==0.3 | |
flatbuffers==2.0 | 13 | 13 | flatbuffers==2.0 | |
fonttools==4.29.0 | 14 | 14 | fonttools==4.29.0 | |
gast==0.4.0 | 15 | 15 | gast==0.4.0 | |
google-auth==2.3.3 | 16 | 16 | google-auth==2.3.3 | |
google-auth-oauthlib==0.4.6 | 17 | 17 | google-auth-oauthlib==0.4.6 | |
google-pasta==0.2.0 | 18 | 18 | google-pasta==0.2.0 | |
grpcio==1.43.0 | 19 | 19 | grpcio==1.43.0 | |
h5py==3.6.0 | 20 | 20 | h5py==3.6.0 | |
idna==3.3 | 21 | 21 | idna==3.3 | |
importlib-metadata==4.10.0 | 22 | 22 | importlib-metadata==4.10.0 | |
ipykernel==6.7.0 | 23 | 23 | ipykernel==6.7.0 | |
ipython==7.31.1 | 24 | 24 | ipython==7.31.1 | |
jedi==0.18.1 | 25 | 25 | jedi==0.18.1 | |
jupyter-client==7.1.2 | 26 | 26 | jupyter-client==7.1.2 | |
jupyter-core==4.9.1 | 27 | 27 | jupyter-core==4.9.1 | |
keras==2.7.0 | 28 | 28 | keras==2.7.0 | |
Keras-Preprocessing==1.1.2 | 29 | 29 | Keras-Preprocessing==1.1.2 | |
kiwisolver==1.3.2 | 30 | 30 | kiwisolver==1.3.2 | |
libclang==12.0.0 | 31 | 31 | libclang==12.0.0 | |
32 | line-profiler==3.4.0 | |||
Markdown==3.3.6 | 32 | 33 | Markdown==3.3.6 | |
matplotlib==3.5.1 | 33 | 34 | matplotlib==3.5.1 | |
matplotlib-inline==0.1.3 | 34 | 35 | matplotlib-inline==0.1.3 | |
nest-asyncio==1.5.4 | 35 | 36 | nest-asyncio==1.5.4 | |
numpy==1.21.5 | 36 | 37 | numpy==1.21.5 | |
oauthlib==3.1.1 | 37 | 38 | oauthlib==3.1.1 | |
opt-einsum==3.3.0 | 38 | 39 | opt-einsum==3.3.0 | |
packaging==21.3 | 39 | 40 | packaging==21.3 | |
pandas==1.3.5 | 40 | 41 | pandas==1.3.5 | |
parso==0.8.3 | 41 | 42 | parso==0.8.3 | |
pexpect==4.8.0 | 42 | 43 | pexpect==4.8.0 | |
pickleshare==0.7.5 | 43 | 44 | pickleshare==0.7.5 | |
Pillow==9.0.0 | 44 | 45 | Pillow==9.0.0 | |
prompt-toolkit==3.0.24 | 45 | 46 | prompt-toolkit==3.0.24 | |
protobuf==3.19.1 | 46 | 47 | protobuf==3.19.1 | |
ptyprocess==0.7.0 | 47 | 48 | ptyprocess==0.7.0 | |
pyasn1==0.4.8 | 48 | 49 | pyasn1==0.4.8 | |
pyasn1-modules==0.2.8 | 49 | 50 | pyasn1-modules==0.2.8 | |
Pygments==2.11.2 | 50 | 51 | Pygments==2.11.2 | |
pyparsing==3.0.7 | 51 | 52 | pyparsing==3.0.7 | |
python-dateutil==2.8.2 | 52 | 53 | python-dateutil==2.8.2 | |
pytz==2021.3 | 53 | 54 | pytz==2021.3 | |
pyzmq==22.3.0 | 54 | 55 | pyzmq==22.3.0 | |
requests==2.27.1 | 55 | 56 | requests==2.27.1 | |
requests-oauthlib==1.3.0 | 56 | 57 | requests-oauthlib==1.3.0 | |
rsa==4.8 | 57 | 58 | rsa==4.8 | |
59 | scipy==1.7.3 | |||
60 | seaborn==0.11.2 | |||
six==1.16.0 | 58 | 61 | six==1.16.0 | |
tensorboard==2.7.0 | 59 | 62 | tensorboard==2.7.0 | |
tensorboard-data-server==0.6.1 | 60 | 63 | tensorboard-data-server==0.6.1 | |
tensorboard-plugin-wit==1.8.1 | 61 | 64 | tensorboard-plugin-wit==1.8.1 | |
tensorflow==2.7.0 | 62 | 65 | tensorflow==2.7.0 | |
tensorflow-estimator==2.7.0 | 63 | 66 | tensorflow-estimator==2.7.0 | |
tensorflow-io-gcs-filesystem==0.23.1 | 64 | 67 | tensorflow-io-gcs-filesystem==0.23.1 | |
termcolor==1.1.0 | 65 | 68 | termcolor==1.1.0 | |
tornado==6.1 | 66 | 69 | tornado==6.1 | |
traitlets==5.1.1 | 67 | 70 | traitlets==5.1.1 | |
typing-extensions==4.0.1 | 68 | 71 | typing-extensions==4.0.1 | |
urllib3==1.26.8 | 69 | 72 | urllib3==1.26.8 | |
wcwidth==0.2.5 | 70 | 73 | wcwidth==0.2.5 | |
Werkzeug==2.0.2 | 71 | 74 | Werkzeug==2.0.2 | |
wrapt==1.13.3 | 72 | 75 | wrapt==1.13.3 | |
zipp==3.7.0 | 73 | 76 | zipp==3.7.0 |