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Abstract—This paper presents a detector and descriptor combi-
nation for robust landmarks on grids from radar measurements.
Landmarks are fundamental for localization, a task of great
importance in the field of mobile robotics and essential for
autonomous driving. A fast detector is proposed which uses a
rotational invariant pattern to locate scattering centers. These
scattering centers occur as local maxima on a measurement
grid, where detections from radar sensors for each cell are
incremented. For association, a binary version of a descriptor
designed especially for radar data is used. Experiments show that
for radar data, the proposed combination improves performance
compared to state-of-the-art algorithms.

I. INTRODUCTION

New generations of radar provide an increased level of
accuracy and number of detections. Because radar is a
substantial part of the modern vehicle sensor setup, it is
moving into the focus of research such as tracking, ego-motion
estimation and localization. Beside Simultaneous Localization
and Mapping (SLAM) the field of localization can be divided
into two major categories. Grid-based localization uses a grid
as reference for localization. This approach performs well
on small environments. But the storage of the grid increases
immensely if the considered environment gets larger. Landmark-
based localization approaches are desirable as the memory
requirement is greatly reduced. These algorithms such as EKF-
SLAM, FAST-SLAM and GraphSLAM have been proven to
provide advanced localization robustness and accuracy for
mobile robotics [1]. However, the landmark-based localization
result is sensitive to the input data, as landmarks of bad quality
may lead to inaccurate localization performance or may end
up in high localization error due to false landmark association.

For laser-based measurements, the selection of appropriate
landmarks has already been investigated in the past [2]. For
cameras, Shi et al. [3] propose visual landmarks which are
shown to be appropriate for camera-based SLAM [4].

The contribution of this paper is a novel combination of
landmark detection and description. The detection of landmarks
based on radar data uses the idea of intensity comparison to
locate scattering centers which allows a robust selection of
landmarks. For the association task of landmarks, this paper
presents a binary descriptor which describes the surrounding by
comparison of statistic measures. This descriptor is designed for
radar-based grids and shows competitive performance compared
to state-of-the-art algorithms.
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Fig. 1. This figure illustrates the difference between the occupancy grid
(left) and the measurement grid (right). The measurement grid features a less
saturated behavior compared to the occupancy grid. The red color indicates
a high occupancy respectively many detections per cell on the measurement
grid, whereas cells with low value are colored in blue.

The paper is structured as follows: Section II introduces the
principles of grid representation using radar measurements. The
detector for robust landmarks is presented in Section III. These
landmarks are described by a binary descriptor in Section IV. In
Section V, experiments are carried out to show the performance
on real world data. The most important points of this paper
are summed up in the conclusions in Section VI.

II. GRID REPRESENTATION OF RADAR MEASUREMENTS

An intuitive representation of range-based measurements is
given by a grid where the surrounding environment of the robot
is quantized into equally-sized cells. The idea is to transform the
detections into a global coordinate system using the mounting
position of the sensor and the odometry of the moving robot.

A. Occupancy Grid

For a grid representation of the environment, occupancy
grids are the most common representation of continuous range
measurements [5], see Fig. 1. For radar data, the measurement
model has to be adapted because radar can detect an object
behind other occluding objects due to mirroring or multi-path
effects [6].

B. Measurement Grid

The most robust landmark centers of radar measurements
are the scattering centers of objects because the sensor
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Fig. 2. This figure shows the pattern for landmark detection on the measurement grid (left). This radial pattern is depicted in the right figure, where the value
of each cell of the pattern is compared to the center cell (white dot). If the value of all cells on the pattern is lower than the center cell, this cell identified as a
landmark candidate.

receives multiple detections from them. In urban environments,
highly reflective objects are typically street lights, metallic
garbage bins, road signs and these are thus desired landmarks
for localization. In order to detect these scattering centers,
occupancy grids are not suitable due to the saturated behavior
of the occupancy grid mapping. This subsection presents a
mapping approach to locate scattering centers of objects. The
idea is to increment the number of measurements for each
cell. Experiments show that a smoothing factor is beneficial in
order to compensate the quantization into cells. This mapping
approach shows diminished saturated behavior than occupancy
grid mapping, making this representation a qualified candidate
for landmark detection (see Fig. 1). As cells with many
detections result in a high value, this representation is feasible
for identifying strong reflective objects. In the remaining
sections this grid is used for landmark detection and description.

III. FSCD DETECTOR

This section presents the algorithm for robust landmark
detection on radar-based grids. The proposed detector operates
on the measurement grid representation as introduced in
Subsection II-B. The key idea is to locate the scattering centers.
The scattering center is the position of an object from which
a majority of measurements is obtained from different angles.

The proposed method for scattering center detection is
inspired by the Features from Accelerated Segment Test (FAST)-
detector [7]. The authors use a designed template for intensity
comparisons for fast corner detection. In the following, a
template is designed to locate local maxima of the measurement
grid.

As in case of multiple drives through an environment, each
observation may be conducted from different directions, the
detector has to be invariant to rotation. This is the reason why

a radial template as illustrated in Fig. 2 is used in which the
cells of this pattern are denoted by cj in the following. Using
this template, a candidate cell ĉ of the measurement grid M
(visualized by a white dot in Fig. 2) has to satisfy

|{M(ĉ) > M(cj) : j = 1, . . . , 16}| = 0 (1)

to be classified as a landmark, where M(cj) are the values
evaluated for the pattern elements. This means that the
candidate must have the highest measurement grid value with
respect to the testing template. At this stage, even clutter may
be detected. To select only strong reflecting cells, the candidate
cell has to be higher than a specific lower boundary to be
classified as a landmark. This is the only parameter of the
proposed landmark detector. As there are only 16 comparisons
in total, the implementation of this detector is very fast. A
single loop over all grid cells is required and the computational
cost is linear with only a very small constant. The detector
observes many landmarks which are close to each other due to
the pattern design. Because of the iterative looping through all
cells, the landmarks are ordered. Therefore, a simple clustering
with linear complexity is used in post-processing to combine
these adjacent landmarks into a single landmark.

IV. BASD DESCRIPTOR

For association, the position information of each detected
landmark is enriched by a feature vector containing features,
i.e information of the landmark and the surroundings. This
allows the robot to recognize primarily seen landmarks by
determining the similarity of the feature vectors. In the
field of image processing, descriptors are an established way
of obtaining appropriate feature vectors. Prominent descrip-
tors are Fast REtinA Keypoints (FREAK) [8], Speeded-Up
Robust Features (SURF) [9] and Scale-Invariant Feature
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Fig. 3. This figure illustrates the basic radial partitioning of the surrounding
environment of the Binary Annular Statistics Descriptor (BASD). This
descriptor uses statistic measures for the elements of each ring. The feature
vector consists of comparisons of these measures with regard to the outer
rings.

Transform (SIFT) [10] which were used for many tasks such
as image registration.

In this section, the Annular Statistics Descriptor (ASD) [11]
for radar-based occupancy grids is extended to a binary version.
In the field of image processing, binary descriptors are popular
because they provide feature vectors which compare rapidly
using the Hamming distance and require less memory. This
descriptor uses an annular partitioning of the surrounding
environment of a landmark, see Fig. 3. The features which
describe the landmark are statistical measures for the elements
of each ring, nRings in total. These measures are the maximum,
minimum, mean, standard deviation and the median for the
values of the corresponding ring, which are n = 5 in total.
This descriptor shows very good description performance on
radar-based occupancy grids [11]. However, the problem is
the high computational cost of the association of these feature
vectors.

The original descriptor ASD can be extended to a binary
descriptor (BASD) as follows: Instead of using the statistical
measures as features, the new binary feature vector consists
of the comparison of these statistical measures. For each ring,
these statistical measures are calculated as in the original ASD.
For the binary description, each of these statistical measures
is now compared to the corresponding statistical measure in
the remaining outer rings, which are nRings · (nRings + 1)/2
comparisons. These comparisons serve as new binary features.

This leads to a feature vector of size
n · nRings · (nRings + 1)/2, which requires less memory
for storage since the entries are binary. Experiments show
that many of these statistical measures do not contribute to
the description of landmarks. It turns out that the mean and
standard deviation are the most descriptive features.

V. EXPERIMENTS

Experiments were conducted to display the performance of
the proposed method in landmark detection and description.

The experiment used eight rides through a parking lot. A test
vehicle was equipped with four short range radars mounted
around the vehicle in order to provide a 360◦ perception of
the surroundings. The driven trajectory through the parking lot
for each ride was about 400 m. For each ride, a measurement
grid was built as mentioned in Section II-B. For ground truth,
a deeply coupled system consisting of a DGPS receiver with
an accuracy up to 2 cm and an INS system (iMAR iTRACE
F400-E) served as the reference system. So, each cell in every
measurement grid of each ride corresponds to the same location
in the parking lot due to the accurate global reference system.
In the following experiments, the detection and the description
performance for landmarks are shown.

A. Landmark Detection

In the first experiment, the performance of landmark detec-
tion was evaluated on the parking lot data set. The data set of
eight grids was split into two different subsets.

One of these subsets was used to tune the param-
eters of the proposed FSCD detector, Speeded-Up Ro-
bust Features (SURF) [9], Features from Accelerated Seg-
ment Test (FAST) [7] and Scale-Invariant Feature Trans-
form (SIFT) [10] detectors.

For two observations, the repeatability measure served as
the indicator for the performance of the detectors. For each
landmark in the first measurement grid, any landmark located
less than 0.3 m away in the second measurement grid was
located. If such a pair was determined, the landmark was
said to be found on the second observation. If landmarks
in the first observation are located very close to each other,
these landmarks may be associated with the same landmark
of the second observation. To avoid this effect, a landmark is
constrained to be only part of one pair.

The repeatability score is simply the ratio of all detected
landmarks and the amount of found landmarks according to
the previous criterion.

To determine the best parameters, three measurement grids
were used and thus six grid pairs in total were given (comparing
the identical grid was skipped). These parameters were used
on the remaining grids for the evaluation, which consisted of
20 observation pairs. The result of the repeatability is shown
in Fig. 4. All detectors provided reliable landmarks whereas
SURF and FAST have the worst reliability with a mean below
50 %. On the data set, the slower SIFT detector achieves
best reliability compared all image processing detectors. It
is remarkable that the proposed FSCD detector attains best
reliability on the data set which makes it a qualified candidate
for landmark detection.

B. Landmark Description

In this section, the performance of the landmark descrip-
tion is evaluated. For comparison, state-of-the-art algorithms
were applied on the measurement grid, Fast REtinA Key-
points (FREAK) [8], Speeded-Up Robust Features (SURF) [9]
and Scale-Invariant Feature Transform (SIFT) [10]. For these
algorithms, the implementations in OpenCV 2.4.7 were applied.
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Fig. 4. This boxplot illustrates the performance of the landmark detection
algorithms. The proposed FSCD detector performs best compared to the other
algorithms.

The FSCD detector outputs were used as landmarks for
the experiment. These landmarks were detected on the mea-
surement grids of the corresponding observations. For each
landmark, a feature vector was calculated by each descriptor.
Next, for each landmark of the first observation the landmark
of the second observation with the smallest error according
to an appropriate measure was determined. This pair was
deemed to be an association. As a ground truth was available,
an association was said to be correct if the position of the
landmarks of this association was the same. The ratio of
correct associations and possible associations served as the
measure of the performance of the descriptors. The ratios of
correct associations for each descriptor are shown in Fig. 5.
Surprisingly, the SURF descriptor fails on this data set. This
might be the reason, because the measurement grid differs
to much from visual images for which SURF is optimized.
In contrast to SURF, the FREAK and SIFT descriptors attain
satisfying ratios of successful associations. Whereas the ASD
descriptor and the proposed modification BASD perform
best on the data set and outperforms the image processing
descriptors. The reason is, that both descriptors are specially
designed for grids from radar data where the benefit is shown
in this experiment.

VI. CONCLUSIONS

This paper presents a novel combination of detection
and description of landmarks designed for radar data. For
representation, a so-called measurement grid is used where the
cell values are incremented with regard to the position of the
measurement. Using this grid representation, the proposed
detector uses a rotational invariant pattern for landmark
detection which is very fast due to simple comparisons. For the
association of landmarks, the feature vector for each landmark
is calculated using a modified ASD. The modification BASD
is a binary version of ASD which allows faster association
of landmarks. Experiments were carried out on real-world
data, where the proposed method shows the best landmark
detection performance regarding state-of-the-art algorithms.
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Fig. 5. For the evaluation of the descriptors, this boxplot shows the performance
of the feature vectors provided by each descriptor. It is remarkable that the
proposed BASD and ASD show the best performance for the dataset.

The description of the proposed BASD displays performance
comparable to ASD, which performs best. However, BASD
provides binary feature vectors requiring less memory. Due to
the binary features, the feature vectors of this descriptor are
fast for association finding.

Experiments show that the proposed combination of FSCD
for detection and BASD for description is a qualified candidate
for subsequent applications such as localization and SLAM.
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