2016 IEEE Intelligent Vehicles Symposium (IV)
Gothenburg, Sweden, June 19-22, 2016

Robust Localization based on Radar Signal Clustering
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Abstract— Significant advances have been achieved in mobile
robot localization and mapping in dynamic environments,
however these are mostly incapable of dealing with the physical
properties of automotive radar sensors. In this paper we present
an accurate and robust solution to this problem, by introducing
a memory efficient cluster map representation. Our approach
is validated by experiments that took place on a public parking
space with pedestrians, moving cars, as well as different parking
configurations to provide a challenging dynamic environment.
The results prove its ability to reproducibly localize our vehicle
within an error margin of below 1% with respect to ground
truth using only point based radar targets. A decay process
enables our map representation to support local updates.

I. INTRODUCTION

This paper investigates the Simultaneous Localization and
Mapping (SLAM) problem [1] applied to an automotive
radar sensor in outdoor scenarios, focusing on the chal-
lenging task of lifelong mapping in a dynamic outdoor
environment. Especially pose estimation in highly dynamic
environments like public parking spaces provides a chal-
lenging setting. Radar sensors are indifferent to changing
weather conditions, inexpensive and can be placed behind
the bumpers of the car because of the penetration depth
of millimeter waves. Therefore they are well established
in the automotive industry [2], although the sensors lack
in accuracy, have a high noise floor [3] and have rarely
been applied to the task of vehicle localization. Unlike laser
scanners, the radar measurements are not taken within fixed
angular intervals, but rather come as a mixed point cloud with
varying numbers of detections. Additionally the penetration
depth depends on the type of reflective matter.

We show how a robust and low-noise map representation
can still be obtained by applying a clustering algorithm
to the noisy radar measurements of these sensors. The
resulting map is stored in an R-tree data structure to maintain
maximum flexibility, while keeping access times low. For the
purpose of validating this map representation, extensive data
has been collected covering a parking space with changing
vehicle configurations over an extended period of time. Our
experimental results indicate, that the presented algorithm
named Cluster-SLAM makes a step towards lifelong naviga-
tion in urban scenarios.

Many of the current approaches to localization involve the
use of particle filters on grid maps to accumulate data over
time and reduce noise in the map. In radar based SLAM,
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Fig. 1. Example of raw radar data collected in the parking space scenario.
The coloring scheme indicates the amplitude of the signal in dB.

existing approaches often use the full spectral information
of the scan [4], [3], [5]. In contrast to these, Cluster-SLAM
utilizes reduced data in form of point based radar targets
common in the automotive industry [2]. These contain am-
plitude, velocity and spatial coordinates without covariances.
Cluster-SLAM solves several problems simultaneously. Its
noise handling capabilities, low memory requirements and
adaptability to changing environments make it outperform
the classical grid representation in numerous aspects.

Cluster-SLAM is implemented as a particle filter, which
is specifically designed to cope with radar data directly.
By applying a density based stream clustering algorithm to
the incoming sensor readings, noisy measurements can be
disregarded before becoming part of the map.

An exemplary data set of a parking space is depicted in
Fig. 1 showing the residual amplitude returned to the radar
sensor. The top right cutout shows a magnified version of
the data illustrating its noise level. The parking space is
approximately a 150 m by 35m area with nine double rows
of parking spots and is surrounded by fences and vegetation.

In context of producing an accurate position estimate in the
scenario of once manually driving into a designated parking
lot and having an actuator reproduce the trained trajectory,
the pose of the vehicle has to be determined reliably. The
parking lot scenario proved to be a very complex scenario
due to the different vehicle configurations, sensor occlusion
in tight spaces and dynamic objects. This is well modeled
with the given data set, since changing occupancy of the
parking space has been recorded for several days.

II. RELATED WORK

The research field of SLAM has been popular over the
past years, resulting in a large variety of SLAM algo-
rithms for different settings and unknown environments.
An overview is outlined in [1]. The algorithms can be
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divided into feature based approaches, such as [6] and grid
based ones, as overviewed in [7]. Feature based approaches
store a highly reduced amount of information about the
environment, which result in low memory consumption, at
the cost of robustness due to association problems [8]. These
techniques are common for camera sensors [9] and have
recently been applied to the radar sensor by Rapp et. al [10].
Grid based algorithms on the other hand have proven to be
effective combined with range sensors, such as laser scanners
and radars [11]. Because particle filters constantly validate
multiple hypotheses to determine the most likely map, a
lot of effort was put into making grid search and access
operations more efficient. This can be done by approximating
regularly shaped areas in the map by polygons [12], by
making spatial search more efficient with octrees [13], [14]
or by modifying the measurement model of the particle filter
such that it operates in a single global map [11].

Based on these advances, we will focus our attention on
the specific setting given for this paper using an FMCW
radar sensor, which emits millimeter waves and records the
reflected power distribution with respect to distance, the so
called A-scope. In the automotive industry, A-scopes are
preprocessed and packaged into target lists, containing a
reduced amount of information [2].

Exploration of radar based SLAM algorithms has yielded
insular results with very different approaches. One of the
biggest concerns in radar based mapping remains sensor
noise and thus the robustness [3]. Hence in [4] for seaborne
vessels, a grid map is generated over several successive
scans. The resulting map is treated as an image, such that
common feature detection algorithms generate landmarks on
the coast used for SLAM. Another approach [5] uses scan
matching on the reflected radar spectra in combination with
EKF-SLAM. By Fourier-Mellin transformation, the authors
find an efficient technique to match scans and generate
position hypotheses. This approach relies on the full spectral
information. For the task of object classification using shape
information, e.g. cars [15], grid maps can be utilized.

For the scenario of repeatedly returning to a specific
parking space at different times of the day, it is vital to
refresh the map continuously with every passing. While
with feature based SLAM, the map update can be achieved
fairly easy, more involved methods have to be devised to
keep grid maps up to date [8], [16]. Because of the static
nature of grid maps, transition matrices have to be defined
in order to calculate the probability of grid cell occupancy.
The presented Cluster-SLAM approach does not require this.

Feature and grid based mapping both have their merits
and drawbacks. In this paper we introduce a method that
effectively combines advantages of both map types by use
of a stream clustering algorithm [17]. In data mining applica-
tions, evolving data sets need to be clustered. Popular classes
of algorithms include density based solutions, most notably
DBSCAN [18], because it does not assume a specific number
or shape of clusters. In recent years, research was focused
on developing algorithms for data streams, processing an
arbitrary amount of data with limited time and memory,
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Fig. 2. System architecture used to localize the vehicle based on radar and
odometric sensors.

demanding a single pass solution. The algorithm described
in [19] is specifically designed for evolving data sets with
noise. We have chosen to adapt this algorithm for Cluster-
SLAM, because it suits the radar sensor’s characteristics very
well. Incoming data points are organized into micro-clusters
representing regions of high data density.

A similar idea using graph based SLAM and a Normal
Distribution Transformation (NDT), intended for lifelong
navigation, was shown in [20]. We present a more flexible
approach for map generation, using a FAST SLAM algorithm
based on particle filters. We introduce a new approach
combining stream clustering and FAST SLAM to make a step
towards lifelong navigation, which is currently an active area
of research [21]. The goal of this work is to continuously
update the map. We show that successful map update is
accomplished easily. This results in accurate localization
results with noisy sensors in real world scenarios. The
contributions of this paper are thus:

1) A robust and memory efficient map representation

2) A measurement model approximating the physical

behavior of a radar sensor

3) A robust SLAM implementation combining the above

in a particle filter approach.

ITI. SENSOR SETUP

The approach described in IV is based on the experimental
setup as displayed in Fig. 2. The sensors are mounted
behind the front and rear bumper of a Mercedes E Class,
which makes them invisible from the outside. The field of
view spans across 360 degrees, while each sensor covers
150 degrees. Each radar operates at 76 GHz and has a
range of 40m with an accuracy of 0.15m and the angular
resolution is listed as below one degree. The Electronic
Control Unit (ECU), generating the radar targets from the
raw spectra, transmits up to 64 targets per radar, resulting at
a maximum of 256 radar points per scan at a rate of 20 Hz.
The preprocessed data consists solely of distance r, angle ¢
and amplitude A. No explicit covariance information is given
per point, thus only the above mentioned accuracies are taken
into account. The vehicle’s odometry is derived from a yaw
rate reading from an IMU and wheel encoders with 96 ticks
per revolution. Such a setup is common in use for driver
assistance system development and is therefore also used for
this localization approach

Ground truth is acquired by the iMAR iTrace F400-E [22],
a precise DGPS receiver combined with INS sensors, with
an accuracy of up to 2cm.
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IV. CLUSTER-SLAM

Raw radar data has a high noise floor, because of the
interference of the transmitted wave packets with each other
or due to multiple reflections increasing the transmission
delay of the waves. Additionally, unlike laser scanners, radar
waves have a macroscopic penetration depth into matter,
depending on the type of material.

Our system is displayed schematically in Fig. 2. Raw data
is clustered to form a scan of the environment. Using scan
matching, this scan is compared and merged with a reference
map to obtain the weights necessary for the particle filter
utilized by Cluster-SLAM. Each particle contains its own
hypothesized version of the reference map, to which the
current scan is compared.

A. Map Representation

The raw data consisting of the two dimensional position
x, y, and the amplitude A is clustered by a stream clustering
algorithm inspired by [19]. They introduce two types of
micro clusters defined as a group of close points. The circular
clusters are depicted in Fig. 3 and can be described by the
following properties:

n n m-—1
We = > wi= 1 - N(dy|Cy. Ry) (1)
i=1 i=1 j=1
1 & 1 &
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In the context of this work, the weight w; for all n radar
targets is calculated from the Gaussian probability N (z|u, o)
that a radar target is visible through the m—1 other clusters in
the map, as illustrated in Fig. 3. This is done to approximate
the radar sensor’s physical properties of multiple scattering
and penetration depth. We assume that another cluster does
not completely obstruct the line of sight, but rather only
the center of a cluster where the Gaussian distribution is
maximal, the line of sight is interrupted.

Hence, the total weight W of the cluster is the sum of the
individual target weights w;. Two cluster types are defined:
Potential and outlier micro-clusters, further on called p
and o-micro-clusters, respectively. All particles exceeding a
threshold W > Wipnresn are called p-micro-clusters. The

Fig. 3. The cluster weight for a given point p; is calculated using the normal
distance d;; of the center points C; from the line of sight originating from
the sensor S for each p;. The radius R; indicates the 1o environment.
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Fig. 4. Map representation using p-micro-clusters in three levels of detail.
As before, the applied color scheme represents the mean amplitude of the
clusters. The ground truth trajectory is shown in green, odometry in red and
the best particle hypothesis in orange.

center point C' is given by the center of mass of the radar
targets according to their weights. The radius R is defined
as the standard deviation of the target distribution, whereas
the squared weighted sum C,, is used for simplification. In
practice, we limit the weight by a parameter W < Wy« to
define a saturation limit.

These micro-clusters can be maintained incrementally
allowing temporal accumulation of the radar targets [19].
Any new measurement p,; is absorbed into the nearest
cluster according to the Mahalanobis distance, if the new
radius is below the radius €, encompassing the measurement
uncertainties mentioned above. Then the properties (1) —
(4) are evaluated accordingly. Note that adding another data
point to a cluster can be done iteratively, such that only a
single pass is necessary. In our approach, we accumulate data
for t,.. = 1s to enhance the amount of information that
is compared to the reference map. Thus, the map consists
of a set of clusters M, containing the accumulated radar
targets with properties (3) — (4). Unlike in grid structures,
clusters can be placed arbitrarily in 3D space containing the
spatial coordinates x,y and amplitude A. Individual clusters
are stored in an R-tree data structure for the purpose of
efficient spacial search, as well as fast insertion and deletion.

In Fig. 4, a cluster map is displayed in various levels of
detail. Let the reader be reminded that only p-type micro-
clusters are kept in the final map, thus leaving regions of low
measurement density free of clusters. In image 4 c), one can
see the outline of four parked cars grouped in pairs leaving a
space between them in the cluster representation. A common
problem when dealing with measurements from automotive
radar sensors are reflections caused by metal surfaces. The
single outlier (II.) is due to a strong reflection from one
of the cars. Similarly, in image 4 b), one can see a few
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clusters (I.) blocking the trajectory of the car. This is caused
by reflections emitted from a rain gutter embedded in the
road’s surface. Note that overlapping clusters exist, as can
be seen in the right image. This is due to the dimensionality
of the micro-clusters using (z,y, A).

To further increase the robustness of the map and to handle
dynamic environments, each micro-cluster decays with time.
We reduce the weight W of the p-micro-clusters in such a
way that if a cluster is not observed over an extended period
of time, it gets degraded to an outlier, which is disregarded
instantly. This is modeled by an effective cluster weight

n m-—1

WC,decay = Z H 1 *N(d¢j|0j,Rj) — me

i=1 j=1

®)

The free parameter 3 is a decay constant and w,, is the
weight of a unit cluster, one where all measurements have
been directly observed without occlusions. Thus each cluster
has to be observed frequently in order to remain a p-micro-
cluster. If the weight drops below the above mentioned
threshold Wipresn, it is degraded to an outlier and thus
disregarded for the pose estimate in the particle filter. On
the other hand, if a cluster has not been observed recently
but is present once again, an outlier will be promoted to
p-micro-cluster within a few observations. The threshold is
found by determining the average number of sightings of a
highly reflective object scaled down by an empiric constant.

The reader may notice the disturbing factors (i.e. cars,
pedestrians, reflections and noise) are usually non stationary,
thus they can be suppressed by a decay on the individual
clusters. Therefore only the stationary objects will remain in
the map. Reflections are usually non stationary if the vehicle
is moving, as reflecting objects are measured from different
viewing angles.

Hence, when a car moves past the reflecting object, the
decay eliminates the clusters produced by reflection. For the
same reason, the decay helps eliminate moving objects while
mapping, because they are not detected in the same location
every time. Lastly, the decay is used to update the map due to
environmental changes, such as cars not being parked in the
same location as before. Even though such clusters usually
have a large weight, since no measurements are updating
the cluster, they are eliminated eventually, since they are not
measured at all in the second passing.

B. PFarticle Filter

We follow the classical predict — update cycle to prop-
agate the particle distribution with respect to the odometry
and radar sensor information acquired from the motion and
measurement model, respectively.

1) Prediction: The vehicle velocity v and yaw rate 1,
are extracted from the Controller Area Network (CAN) using
on board sensors. Using a standard single track model, the
odometry pose is estimated. We assume that within two
consecutive time steps At = to — tq, the car translates by
Ax, = vAt and is rotated by At,. We assume v to be
constant within A¢. The motion model is an adaptation of
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the sampling motion model described in standard literature
[23], applied to the integrated velocity and yaw rate. The
error is modeled with four free parameters a; given in the
sampling algorithm.

2) Update: Each particle consists of a reference set M,
filled with my, clusters called map in further elaboration.
Let a scan S; be a set of ns, p-micro-clusters accumulated
over time t,.. at time ¢. Map matching between &; and M,
is applied to derive the particle weight.

Each micro-cluster s; € &; is assigned to its nearest
neighbor m; € M, in terms of the Mahalanobis distance
as described above. Similar to [24] the scan S; is assigned
a score

ns, "My
D(S;, Myp) => > Dipi(S 4 5) " i

i=1 j=1

(6)

whereas X = RTY,; R is the covariance matrix transformed
into the coordinate system of M,,. The mean vector distance
pij = Rp; + T — py is transformed accordingly. The
parameter D; represents the mean distance between a micro-
cluster in a particle’s reference map and any pose, this micro-
cluster was observed from. The scoring function is applied to
all clusters in the scan S;. According to this scoring function,
the particles are weighted.

3) Resampling: Once all particle weights have been ob-
tained, resampling is done using a low variance sampling
algorithm. This standard approach agrees very well with
the requirements of this paper’s setting, especially a low
computing complexity and robustness of the technique due
to statistically dependent sampling the weight distribution of
the particle set P.

4) Lost Robot: After the initial mapping, particles can be
scattered across the entire map, depending on the knowledge
of the initial conditions to solve the lost robot problem. In
this paper, we assume that we know the position of the robot
within the accuracy of a standard vehicle GNSS system,
Hence, we scatter the initial pose of the vehicle over an area
of 16 m and 90 degrees in heading around the origin of the
map. This is merely done to reduce the initial size of the
state space such that the particles converge quickly to the
true vehicle pose.

V. EXPERIMENTAL RESULTS

As mentioned in the introduction, the described method
not only allows the generation of a single map but also a
continuous update. We evaluate the localization and map
update capability on a large scale dataset collected with a
prototype vehicle from Daimler AG. The set includes 32
trajectories on the parking lot in front of one of Daimler’s
R&D facilities.

A. Characterization of Ground Truth

Ground truth has been recorded across the entire data set
and a statistical analysis of the standard deviation reported by
the GNSS/INS system is given by the following quantities.
The mean error margin of the ground truth for the entire
data set is given by: g,q = (0.094+£0.315) m The deeply

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on May 31,2020 at 01:00:41 UTC from IEEE Xplore. Restrictions apply.



3.5

T T T
Mean Particle

2.5

1.5

0 50 100 150 200 250 300 350 400 450

Travelled Distance [ [m)]

0.5
0

Deviation from GT dgr [m]

Fig. 5. Deviation from ground truth (Euclidean distance) dgT for the pose
error during the map creation phase of the best particle at 16:00 when the
parking lot is highly occupied. The loop closure has been detected with an
error at the end point of 0.143 m

coupled GNSS/IMU solution is a suitable reference system,
because of its very high accuracy and reliability. The scenario
in the parking lot has explicitly been chosen due to the
high availability of the DGPS system to ensure high quality
ground truth data.

B. Initial Mapping Process

During the mapping process, the clustering algorithm
is completely relying on sensor readings. Therefore, it is
essential that the particle filter produces a map that is
internally consistent. Most importantly, loop closures have
to be detected and the error at the end of the trajectory has
to be minimal.

In Fig. 5 an optimized map from the particle filter is
shown. The particle trajectory is very close to the ground
truth in most cases. One of the most important criteria for
map quality is whether loop closes can be detected. Since
the trajectory is closed, we compare the end point error for
mapping runs at each time of the day in Fig. 6. The main
thing to note is that the error is basically independent of data
collection time and thus of parking configuration. At 9:00 the
parking space was usually only partially filled, while at 16:00
almost every parking lot was occupied. By 18:00, almost all
cars had disappeared.

C. SLAM With Existing Map

In Section V-B it was shown that the end point error can
be decreased by optimizing the map with Cluster-SLAM.
Therefore we apply the decay mechanism described above
to model environmental changes in the measurement update.
The map update is graphically shown in Fig. 7 and analyzed
quantitavely in Fig. 8.

Fig. 8 shows that despite changing environments, the
localization of Cluster-SLAM yields stable results, even
though at 18:00, the parking space was almost empty. For
the localization within the map, we assumed that the starting
position is known with standard vehicle GPS accuracy of
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Fig. 6. The mean error of the mapping process for all sequences in the

data set sorted by time of the day, which is an indicator for parking lot
occupancy. The error bars indicate a 1o environment over all sequences.

Fig. 7. The vehicle passes through a region that changed since the initial
mapping. Between the time steps ¢; and tg, the map update with cluster
decay removes the two indicated cars, while preserving the immovable
structures.

about 4 m in radius and 20 degrees in heading. After the
initial convergence phase of the particle filter (about 50
m) yields an accuracy of maximally 2m. A localization
step adds new clusters to the map, while others decay,
resulting in a map size of approx. 200 kB for a sequence
from the given data set. This is several orders of magnitude
smaller than grid based map representations, which typically
amount to several MB for the same area. The memory and
computing requirements thus allow this algorithm to be real
time capable.

VI. CONCLUSION

We have presented a SLAM technique using automotive
radar targets and odometric sensors, developing a map from a
stream clustering algorithm. The map representation is espe-
cially suited for dynamic environments, which was validated
using an extensive data set of a public parking space with
different configurations of parked cars. Environment dynam-
ics are managed by cluster decay, which adds robustness to
the system. We have shown that the presented map is suitable
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Fig. 8.

Localization results after initial mapping with vehicle configuration from 16:00. The respective vehicle configurations are illustrated as ground

truth maps at the top. Each localization error with respect to the traveled distance compared to the odometry result is shown directly below.

for localization using Cluster-SLAM. To suit the cluster map,
a specially designed weight function has been conceived to
produce an accurate localization result despite the noisy and
inaccurate sensor data. The map representation combines

the

advantages of feature and grid based algorithms alike,

containing a high information density, while consuming little
memory. Thus, our approach constitutes a significant step
towards lifelong mapping in unexplored scenarios.

Future work will omit the necessity of storing a map

for

each particle. This improves memory requirements at

runtime. Improvements in localization accuracy across the
entire trajectory are planned.
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