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Vehicle localization with low cost radar sensors
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Abstract— Autonomous vehicles rely on GPS aided by motion
sensors to localize globally within the road network. However,
not all driving surfaces have satellite visibility. Therefore, it
is important to augment these systems with localization based
on environmental sensing such as cameras, lidar and radar in
order to increase reliability and robustness. In this work we look
at using radar for localization. Radar sensors are available in
compact format devices well suited to automotive applications.
Past work on localization using radar in automotive applications
has been based on careful sensor modeling and Sequential
Monte Carlo, (Particle) filtering. In this work we investigate
the use of the Iterative Closest Point, ICP, algorithm together
with an Extended Kalman filter, EKF, for localizing a vehicle
equipped with automotive grade radars. Experiments using
data acquired on public roads shows that this computationally
simpler approach yields sufficiently accurate results on par with
more complex methods.

I. INTRODUCTION

Localization is a fundamental requirement for autonomous
driving vehicles. We propose a method for localizing an
autonomous vehicle using solid state mono pulse short range
radars, SRR. The method is based on Iterative Closest Point
ICP, matching of current scans from the vehicles radars to
scans from a previous traversal of the same road. These
ICP matches are used as pose measurements in an Extended
Kalman Filter, EKF, that then smooths these estimates using
a vehicle motion model. The method is similar to the method
in [1]. The novel aspect here is the use of the SRR radar and
the evaluation on data collected on public roads.

When operating outdoors global positioning systems
(GPS) should be the first choice for localization. In particular,
RTK-GPS can give accuracy well sufficient for autonomous
driving. The need for other localization arises when GPS
is not available, which can happen near tall buildings or
in tunnels for example. Dead-reckoning can maintain the
localization for a time but will eventually drift beyond
acceptable limits. There are well known methods to localize
by comparing sensor readings such as from cameras or lidar
to a map. The map, pose, and the sensor model together
predict a sensor measurement which can then be compared
to the actual one. Optimizing that match with respect to the
pose gives a localization relative to the map.

For autonomous driving there are some constraints that
could influence the choice of both sensor and the localization
method. When it comes to the sensors it is important that
the sensors be rated for automotive environments. Time to
failure is critical if the system is to be both reliable and
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Fig. 1.

Sensor equipped truck used for experiments.

economical. The size, power, mounting and computational
requirements also matter. In these regards SRR provide a
cheap and durable option to other sensors. Like lidar sensors,
they give a bearing and a range and have the added advan-
tage of providing Doppler based relative velocity. They are
available in packages designed for automotive applications.
Compared to lidar they are cheaper and have no moving
parts. Compared to cameras they do not require computation
of depth and are not affected by lighting or weather. The
automotive SRRs used in this work where supplied as closed
systems where only a limited number of already processed
detections where available every time-step, rather than the
original signal, which lends itself well to the application of
the ICP algorithm.

The localization method requires a map and sensor model
where the building and storage of the map can be thought
of as a cost to be minimized. One does not need the map
to contain more information than that required to predict a
sensor reading from the chosen sensor from poses on the
road. This is significant when one considers how many km
of road would need to be mapped accurately for autonomous
driving to be universal. For example cm size voxel grid over
all roads would be both very large and hard to maintain
as the world changes. It would also be much more than is
needed. Admittedly, this does not consider other possible
applications of dense 3D maps such as detection of changes.
Feature based maps can be quite compact but they too require
processing to build and maintain. Furthermore feature based
maps often ignore much of the data that does not come from
the chosen features.

Our proposal is that saved radar data from a previous
recent traversal of the route provides the needed information
to localize and no more. It is also easy to maintain as one
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can simply swap out the data for more fresh data when
changes are detected. These make it worth investigating in
the autonomous driving setting. We look at how well such
an approach can localize a truck on actual roads.

The main contribution of this work is the use of ICP
and EKF to localize with SSRs relative to a single previous
pass in an autonomous driving scenario. This approach
requires less data and less computations than previously tried
methods. These are evaluated using actual data collected by
an instrumented vehicle shown in fig. 1. We show that we
achieve localization performance that is sufficient for most
autonomous road driving applications and comparable to the
most relevant prior work used as a benchmark for our results.

II. RELATED WORK

The use of radar in autonomous vehicle navigation is well
summarized in [2]. In [3] radar scan matching SLAM is done
using the Fourier-Mellin transform. They motivate this more
complex matching scheme by claiming that matching using
ICP will be prone to failure due to noise and the sparseness
of the data. No citation is given supporting that claim. We
acknowledge that these issues do present challenges and that
ICP can indeed fail, as can other methods. We show here
that despite this, ICP can be used successfully with radar on
typical public roads.

Localization to a map is an easier problem than simulta-
neous localization and mapping, SLAM, but the methods and
prior work on SLAM are related to localization. A feature
based EKF SLAM approach using radar was shown in [4].
This is similar to our approach except for the use of strong
reflections as the features. We use the entire scan with no
need to extract features. This is a simplification and to be
preferred if it does not worsen the localization significantly.
Depending on the density of the features scan matching can
potentially perform better than feature based methods.

Short range radar is used to localize in an autonomous
driving context in [5]. There the focus is on modeling the
dynamics in the environment by a semi-Markov process. The
heart of the system is a grid map representation where every
cell’s dynamics are modeled as a dynamic process. This
method is only sensible for localization in a limited area. The
final localization is done using Monte Carlo Localization,
MCL), (aka a particle filter) [6]. MCL is the preferred method
of localization in robotics as it can represent multimodal
distributions. It is not a practical alternative to the EKF in our
case since the 'measurements’ from ICP would be difficult
to compute on a per particle basis.

The most relevant prior work is Lundgren et. al [7]. They
used production grade automotive radars, a low-cost GPS
and line marking detections from a camera system together
with a detailed map to localize the vehicle. Here the map
was created using an accurate RTK-GPS and by clustering
the radar measurements into point sources which could be
considered a kind of feature based map. Localization was
performed using a particle filter where the radar measurement
was modeled as a Poisson process describing the number
of measurements from point sources or clutter. Classifying
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much of the available radar measurements as clutter and
using a point source model for landmarks is an attempt
to reduce computational cost and memory requirements but
comes at the expense of discarding much of the available
information. The same authors also used a variant of the Ex-
pectation Maximization algorithm (EM) to find a maximum
a posteriori estimate of the landmark map through extensive
offline computation [8]. Our method is significantly simpler
than these methods and, at least on our data, performs
comparably well.

Building and maintaining a radar based grid map is
difficult due to the fluctuating radar cross section of the
landmarks [9], [10]. Here they use millimeter wave radar
where the entire return in each beam is processed allowing
more than one detection per beam. They show that evidence
methods (such as Dempster-Shafer) can give improvements
over the more traditional Bayesian mapping approach. In [11]
these authors go so far as to build models that can be used
to predict radar returns. Our SSR only gives a list of the
strongest returns so we can not utilize these more advanced
methods. These works highlight the advantage our method
has in avoiding the computation of a map.

In localization with laser scanners, scan matching using
the Iterative Closest Point algorithm (ICP) [12], described in
section III-A, is a popular approach that provides excellent
results [13]. Automotive SRRs are less accurate than laser
scanners and provide relatively sparse measurements. The
standard ICP algorithm does not take into account sensor
uncertainty and the effect of uncertainty of our own pose,
nor does it consider the likelihood of a particular result with
respect to the possible motion of the vehicle between scans.
By incorporating the ICP algorithm in a Kalman filtering
framework we are able to remove outlier scan matching
results and provide a filtered estimate that is much smoother
than that obtained by ICP alone.

Scan matching algorithms match the overlap in two sensor
measurements to estimate the sensor spatial transformation
(motion) between the two measurements. When used be-
tween consecutive scans this can provide a very accurate
replacement to wheel-based or inertial sensor odometry. In
[14] Barjenbruch et. al showed impressive results when esti-
mating velocity and yaw-rate using a similar radar sensor to
the ones used in this work. Their approach optimized both the
discrepancy in position of radar detections and the Doppler
velocity with respect to the vehicles motion. However, even
small errors in methods which calculate the relative motion
between consecutive sensor readings will accumulate when
summed over a longer time. In this work we investigate
how well we can match current radar detections to a map
of previous radar detections to correct drift accumulated in
summing relative motion estimates. The Doppler velocity of
radar detections are used to discard detections originating
from moving targets.

ITII. POSE ESTIMATION

We use an extended Kalman filter, EKF as our pose
estimator. Although the specific vehicle model is not of
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fundamental importance to our approach we present our
model here. We use a simple constant turn rate velocity
model with control variables u; = (v,w)” where v is the
speed and w the yaw-rate:

$ = (cos(0)v, sin(0)v,w)T + € ()

with € ~ N (0, R). We formulate direct measurements, zt,
of the pose, sy = (¢, Y+, 0¢) along with their covariance Q.
These are provided by a scan-matching algorithm, described
in section III-A, which estimates z such that current sensor
data, described by the sensor model listed in section III-B,
aligns with recorded sensor data from previous visits to the
same area, stored in a map described in section III-C. The
resulting localization algorithm is described in section III-D.

A. Iterative Closest Point

ICP [12], has been used extensively in localization. The
algorithm works by repeating a two step procedure until
convergence. The first step is matching each point in a
set of source points, X, to the closest point in a set of
reference points, Y, and the second step is finding the
optimal transform between the source and target sets, given
the assignments. Matching points by distance is a computa-
tionally efficient operation if we use a kd-tree data structure
to store Y. Here we denote the points in X as x; and the
matched (closest) point from x; in Y as y;. The basic 2D
ICP version optimizes the sum of squared distances between
source and target points to find the rotation angle ¢, encoded
by rotation matrix R(¢), and translation ¢.

di =y — (R(¢)z; + 1)

argmin Z di d; )
3

A similar optimization can be done in 3D by adding 2 angle
and one translation dimensions. When the motion between
scans actually is 2D, the use of the 3D formulation will be
less stable. When the motion has large changes to pitch or
roll, the 3D method is needed and the reference data needs
to be dense in the third dimension as well. When the motion
is approximately 2D, the 2D method may still be more stable
even if it can not model the larger pitch and roll motions.
Our data is from a 2D scan so the 3D method is not feasible.
Our scenarios are therefore limited to roads that are relatively
flat (not necessarily horizontal but changes in slope should be
limited so that the relative motion between the reference and
live scan is nearly 2D). Of road terrain for example would
be a problem.

ICP can provide pose measurements for the Kalman filter
by finding the optimal transformation, (R(¢),t), from the
position of radar hits in the sensor frame given by our current
estimate of the pose to the frame of the map. This same
transformation then is applied to our current pose to give a
new pose measurement.

The standard least squares formulation in eq. (2) assigns
equal cost to each point and does not allow us to model the
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uncertainty in where measurements originate. Consider the
case when our measurements are of a wall, here we would
like to constrain our points to lie on the plane of the wall but
not otherwise. This can be modeled probabilistically using
a likelihood function where we assume points are normally
distributed with a Normal distribution that corresponds to
the uncertainty in where the measurement originates. For the
point-to-plane case we can assign a small covariance along
the plane normal and large covariance in other directions
[15].

The likelihood function that we wish to optimize with
respect to R(¢) and ¢ is based on the independent dif-

ferences between normally distributed variables x; — y;,
x; ~ N (X, C%), yi ~ N(uY ,CY), with an optimizer:
di = p — (R(d)ui +1)
3)

argrg3trlzd?<cf + R(¢)CXR(¢)") " "d;

Using appropriate covariance matrices CY and C;X we
can generalize different variants of ICP scan matching such
as point-to-point, using C} = I,C;* = O, point-to-plane
and plane-to-plane. For further details consult [15].

For low noise sensors such as laser scanners, extracted
shapes such as lines and planes can often reliably be es-
timated by calculating point estimates from nearby points.
Perhaps the most general approach is the Normal distribution
Transform [16] which divides the space into equally sized
grid cells and fits a normal distribution to encode the shape
of the points in each cell. For radar data these types of
shape extraction methods are very problematic since our
data is corrupted by noise and clutter measurements. It is
also requires the computation of the covariance matrices in
eq. (3), for example: [15] performed plane-to-plane matching
by extracting surface normals using principal component
analysis of the 20 closest points for each matched point z;.

We take a simpler approach using eq. (3) to model the
range dependent uncertainty of the radar, as described in
section III-B. We model the covariance matrices C;* and
CY as isometric C{* oc I, CY =oc I. This also removes the
dependence of the metric term (C) + R(¢)CX R(¢)T)~! in
eq. (3) on the rotation matrix R(¢) and allows this metric
matrix to be replaced by a scalar w;. Also, points in X that
are more than a threshold distance d,, 4./ /w; from any point
in Y are not included in eq. (3).

B. Sensor Model

The radars deliver data every time-step ¢ as a list of
tuples, scan; = [(rj, ¢;,7;, A;),...], one for each detection
7, containing the range, r, the bearing to the target ¢, the
Doppler velocity 7 and an amplitude value corresponding to
the attenuation of the signal power, A.

Scan matching is performed in a global Cartesian coordi-
nate system in which the map points are stored. We model
the uncertainty of the position of our radar detections by
viewing measurements as normally distributed around the
current scan positions, X, and map positions, Y. As we
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Fig. 2. Isotropic covariance, red, compared to linearized covariance, blue,
for modeling radar uncertainty. The standard ICP treats all points the same,
isotropic approximation models the increase in uncertainty with range and
the linearized method fully models the covariance.

described in the previous section we model the distributions
with isotropic covariance matrices which we further specify
here as CX = (rfoys + )21, CY = (rY oy + ¢)?1, where
;¥ is the range of the point and o, the standard deviation
of the bearing. Figure 2 shows the approximation we make
in the radar model.

ICP provides a transformation that gives the minimum of
the cost in eq. (3) but does not provide any estimate of
the uncertainty in that transformation. We use the Hessian
of eq. (3) at the optimum to compute an estimate of the
covariance, ()¢, of the measurement of the vehicle pose used
in the EKF, z;. We calculate an approximation of (); using
the Hessian method as in [1]:

-1
()

where E,,in (¢, t) is the optima of eq. (3), H the Hessian and
n the number of points used in the numerical approximation.
Under-estimation of the measurement uncertainty in the EKF
can lead to divergence and brittleness in the estimates.
Over-estimates have a milder consequence of smoothing
the estimates which then become pessimistic. Therefore, we
allow for scaling of Qt by a constant ¢, > 1, Q; = CJQt,
determined empirically.

When localizing we want to remove measurements from
moving targets from both X and Y. By thresholding the
difference between the measured Doppler velocity 7; with the
expected Doppler velocity for stationary targets, V;, [14] we
can remove most moving targets from consideration. V; is the
Doppler velocity that would be measured from a stationary
target based on the motion of the sensor, where the sensor
pose relative to the vehicle pose, s, is (7, ys, as)’:

Qi = L

2

Emin(¢a t)

— “4)

Vi(ue, i) = — (v¢ — wiys)cos(g; + )
— (wixg)sin(p; + as) 5)

C. Map Creation

Our map consists of the positions of radar detections in
UTM coordinates according to assumed ground truth pose
measurements from a RTK-GPS. Measurements are grouped
into sets of 10 scans, converted to UTM coordinates, and
stored together with the last pose associated with these scans.
This allows us to efficiently look-up nearby map points by
querying for all measurement sets within a threshold distance
using a kd-tree data structure.
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Fig. 3. Path taken during localization. Red trajectory is using odometry
only, blue using proposed method. Satellite imagery is from Bing.

D. Localization Algorithm

Our localization algorithm is EKF recursive pose estima-
tion using the motion and measurement models as described
in previous sections. As input the algorithm takes the current
pose estimate and control variables along with scan data from
the radars. Reference scan data in a global coordinate system
is available from the data structure map. The estimation
parameters i, >, are the updated mean and covariance of
the pose st.

After each motion prediction step we compare the map to
current sensed data in order to generate the measurement z;
and measurement noise @); for the EKF update step. In order
to have an adequate amount of data for scan-matching we
store the last k scans in the data structure we call a keyframe
which converts the radar detections from several scans into
the same coordinate system using odometry information. The
keyframe acts as a FIFO queue consisting of the last &
scans at each time-step. We compute the best alignment of
the scans stored in the keyframe with reference data using
eq. (3). We then check if z; is within a confidence threshold
from our predicted pose if not we discard the improbable
ICP results as outliers.

IV. EXPERIMENTS

We evaluated our method using two data sets, one, data
1, that we collected and one, data 2, provided by the authors
of [7]. Data 2 allows us to directly compare our results with
[7] giving use a baseline. To collect data 1 we have used
the truck shown in fig. (1) which is equipped with 76 GHz
Pulse-Doppler Delphi Short Range Radar (SRR) sensors and
a high precision Oxford RT2002 GPS/IMU unit. The SRRs
deliver up to 64 detections each at 20 Hz while the Oxford
RT2002 delivers measurements at 100Hz but we have down-
sampled the speed and yaw rate signals to 20Hz. The two
radars used are mounted on left and right side of the cabin,
66 cm behind the front and 50 cm above the ground, are
directed perpendicular to the direction of travel and have
a field of view of r € [0.5m,80m], ¢ € [—75°,75°]. The
measurements errors are modeled as normally distributed
noise where 99% confidence levels correspond to an angle
error of £2.2° and a range error of 0.25m. The GPS/IMU
unit is accurate within a few centimeters as long as the unit
is connected to the internet and can receive RTK correction
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Fig. 4. Lateral (solid blue) and longitudinal (dotted red) errors in meters using proposed localization. Negative numbers correspond to left and behind,

respectively.

data. We consider the pose data as ground truth when we
have RTK coverage.

The truck was driven twice along the same route. The
route includes both a highway section and smaller roads in a
suburban setting Fig. 3. We use the radar and RTK-GPS/IMU
from the first pass to create the map. The RTK-GPS/IMU
from the second pass will be used as ground truth to compute
the pose errors. Our control signals v, w was taken from the
Oxford sensor which gives very good speed measurements
but worse yaw-rate, corresponding to a longitudinal drift of
0.02 m and a lateral drift of 1.2 m when driving straight for
100 m. The 5.4 km long path for the second run is shown
in figure 3 . The experiment starts on the highway, the truck
then exits and heads towards a round-about after which the
final stretch of the experiment takes place on a smaller road
on the edge of a residential area adjacent to several large
buildings.

V. RESULTS AND DISCUSSION

We start with data 1 that we collected ourselves. We
needed to first determine the best values for the number of
scans per keyframe k£ and for the measurement covariance
scale factor c,. We optimized these with respect to root
mean square error and maximum error on a small training
data-set, separate from our evaluation data-set, and found
the best values to be: k = 4, ¢, = 50.0. Our process noise
covariance was R = At diag(0.01,0.01,0.005), where At
is the time between EKF prediction steps, the ICP outlier
threshold, d,,,qz, Was set to d,,q = 1.0 and for the sensor
model we have used ¢ = 0.1.

Figure 4 shows the lateral and longitudinal errors for
localizing with point-to-point ICP when compared to the
Oxford IMU/GPS unit. The root mean square lateral error
is 7.3 cm and at worst 27.8 cm. The root mean square
longitudinal error is 37.7 cm and at worst 115.1 cm. These
errors are somewhat exaggerated because of time synchro-
nization issues between the sensor measurements and ground
truth data of up to 0.01 seconds which would correspond
to at worst a longitudinal error of 24 c¢cm for the maximum
speed of 24.1 m/s during localization. During the experiment
there where four large RTK-GPS corrections, that essentially
caused the ground truth reference position to shift much more
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Fig. 5. Longitudinal error, same as in fig. 4, top and displacement
per measurement of the RTK-GPS divided by the time difference of
measurements, bottom.

that the speed of the vehicle would suggest. These correspond
to some sharp edges in the error in fig. 4 which can be clearly
seen in fig. 5 where we plot the reported displacement of the
RTK-GPS per time-step, d, divided by the difference in time
of its measurements, At. Here large changes in d/At are
marked with red stars.

Since the truck was driven along a highway in the first part
of the localization experiment, there are often few objects
to detect besides guard rails and vegetation such as trees
and bushes growing parallel to the highway which mostly
corrects the lateral position of the vehicle. This allows small
longitudinal errors of the ICP algorithm to grow over time
until something that can fix the longitudinal position is
detected, which can be seen in fig. 4 . During some segments
along the highway there are more distinct objects such as
adjacent buildings which allows the algorithm to correct the
longitudinal position, giving rise to the sharp decrease in
longitudinal errors after a period of increase. After around
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Fig. 6. The ICP global position measurements are shown in purple for
inliers and in yellow for outliers (only a few outliers at the right most end),
during a right turn near a round-about. Current radar detections after ICP
shown in green and map data shown in blue. Experiment time shown as
black text.

200 seconds the truck enters an area with a round-about, here
there are many curbs to detect for the sensors which helps
correct the position. The resulting ICP measurements for the
EKF are shown in fig. (6). After this area the truck enters
a smaller road where there are several adjacent buildings,
which also provides detections that can correct longitudinal
errors. The localization performance is mostly dependent on
the quality of discernible features available such as corners
of buildings or detected curbs with a specific shape, such as
near the roundabout, rather than the speed of the vehicle or
how fast it is turning.

In [7] the localization performance was evaluated with
respect to a maximum allowed lateral error of 20 cm and
longitudinal error of 100 cm. We show our results using this
same criteria in the first row of table I.

TABLE 1
COMPARISON OF TIME WITHIN ERROR LIMITS

Method | Lateral | Longitudinal

Our method on Data 1 99% 99%

Our method on Data 2 30% 89%

[7] using radar on Data 2 23% 90%

[7] radar and cameras on Data 2 87% 94%

For a direct comparison, we have evaluated our method
data 2 which is that same as used in [7]. It includes detections
from a single radar mounted on the grill of a car, speed and
yaw-rate from a speedometer and a gyroscope and a RTK-
GPS for reference. The car is also equipped with a low cost
GPS and a camera that was used to detect lane markings.
The data-set is divided into two parts where the same road
is driven in each part.

This data-set is significantly more challenging than the
previous data-set, not only is there only one radar instead
of two, but the sensor system was configured to filter out
many of the detections, leading to a far more sparse data-set,
where mostly guard rails, delineator posts and traffic signs
where detected and not much of the surrounding terrain.
This filtering was likely of benefit to the method in [7]
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Fig. 7. Comparison of our proposed method, green, overlaid on the plot
from [7], blue, on the same data using the same sensors.

but our method could have used the data that was filtered
out. Furthermore, the radar data has larger inconsistencies
between the mapping run and the evaluation run than in the
truck experiment.

For this second data-set we used slightly different pa-
rameters from the truck data-set, the process noise R was
larger to account for less accurate odometry information than
used in the truck experiment, R = At diag(0.05,0.05,0.05),
dimaz Was set to dyq; = 10.0 to allow for a larger search
of correspondences in the sparse data-set. One difference
between the results from Lundgren et. al and ours is that
they start their initial estimate at the first low cost GPS
measurement and we start at the assumed known ground
truth position. This allowed us to set d,,q, lower than if we
needed to do the initial convergence. We show our results
on this data in the second row of table I. Also shown are the
numbers from Lundgren et. al.

The low number of radar detections in this data-set leads
to sections of the evaluation run where there are no matching
data so that the ICP algorithm cannot be performed and here
localization relies on odometry alone. This necessitates the
large value for d,,q, since we need to search a larger area
for correspondences after such sections. This in turn, adds
incorrect correspondences for the ICP algorithm which leads
to many erroneous ICP results which necessitates outlier
removal and the use of a Kalman Filter to smooth the
estimate. For example during the large spike in lateral error
in fig. (7) error at time 47-50 seconds there are only two
radar detections. This is not enough to perform ICP, the
same phenomenon occurs at 76-82 seconds. The peak in
error at 94 seconds occurs after a section with no radar data
where the estimated pose covariance has grown large and our
confidence based outlier removal is unable to filter out a few
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bad ICP results. At around 158 seconds the filter locks on
to the wrong longitudinal position, this is during a section
of two-lane road with a guard rail separating the two lanes.
During the mapping run, the car drove on the other lane of
the road which causes substantial inconsistencies between the
radar data for the evaluation run and the mapping run. After
this the guard rail separating the lanes disappear and the car
enters a turn. Here our method has substantial problems in
correcting the position estimate.

Despite the data being filtered for the feature based
mapping method we were nevertheless able to localize about
as well as the more complex feature based method. It is
hard to draw strong conclusions from this short comparison.
Comparing to the unfiltered longer data set on public roads
that we collected ourselves we can see that our method does
benefit greatly from more dense data.

VI. CONCLUSIONS

In this paper we have presented a localization algorithm
for a radar equipped vehicle based on an EKF using ICP
scan matching against a recorded map of previous sensor
data from a single pass through the same route. We show
that this can produce good localization of an autonomous
vehicle by evaluating with actual radar data collected on
public roads. This method has the advantage of not requiring
large amounts of mapping data to be processed offline but
rather can use the most recent data from a single pass along
the same route with the same sensors.
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