simulation script #29 by 245d12c6e8f19bd7af1f2e5df58b4b68?s=40&d=mm Yujen Ku

mmwave_objectdetection.m
Raw
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
clear;
alpha_est_list = [];

raw_rx_dec_record = 0;
%% Params:

%control param
Detail_plot      = 0;
showdetail       = 0;
DETECTION_OFFSET = 50; % to add packet detection error
INTERPOLATE      = 0;

%snr settings (run estimation under different snr values)
snr_value = [0];   %snr_value = [10,20,50,100,200,500,1000];

%how many cycles of packets you are going to measure(each cycle: 2 nulling estimation packets andd 5 object detecting packets)
total_num_est = 100;

%how many packet used in one measurement. (not including 2 packets for nulling)
num_avgpkt    = 5;

%variables for estimated parameters
obj_est_gridx_record = zeros(length(snr_value),total_num_est);
obj_est_gridy_record = zeros(length(snr_value),total_num_est);
ant_est_veloc_record = zeros(length(snr_value),total_num_est);


for snr_i = 1:1:length(snr_value)
    snr = snr_value(snr_i);
    disp([ 'creating case snr = ' num2str(snr)]);
%environment param
%           |          ||
%      (0,0)+-------------------- <---v_obj -----o(x_obj)
%           |          ||
%           |< x_wall >||
%           |          ||
%           |          ||
%           |          ||
%           ^          ||
%           |          ||
%(y_ant)   car(ant)    ||

%setting the initial position, velocity of object and antenna
    x_obj         = 3;                                                     %initial position of moving object(m)
    x_ori_obj     = x_obj;
    y_ant         = -10;                                                   %initial position of antenna(m)
    v_ant         = 10;                                                    %velocity of antenna(m/s)
    v_obj         = -1.5;                                                  %velocity of moving object(m/s)
    x_wall        = 1;                                                     %horizontal distance of wall to y axis (m)
    thick_wall    = 0.01;                                                  %2*thickness of wall (m)

% __/ Tx
%
% __/ Rx
%
% __/ Tx

    dis_ant = 0.1; %distance between antennas
    
    % Waveform params
    N_OFDM_SYMS             = 500;                                         % Number of OFDM symbols
    MOD_ORDER               =   2;                                         % Modulation order in power of 2 (1/2/4/6 = BSPK/QPSK/16-QAM/64-QAM)
    TX_SCALE                = 1.0;                                         % Scale for Tx waveform ([0:1])
    
    % OFDM params
    SC_IND_PILOTS           = [-150,-130,-110,-90,-70,-50,-30,-10,10,30,50,70,90,110,130,150]+256;                           % Pilot subcarrier indices
    SC_IND_DATA             = [-177:-151, -149:-131, -129:-111, -109:-91, -89:-71, -69:-51, -49:-31, -29:-11, -9:-2, 2:9, 11:29, 31:49, 51:69, 71:89, 91:109, 111:129,131:149 , 151:177] + 256;     % Data subcarrier indices
    N_SC                    = 512;                                         % Number of subcarriers
    CP_LEN                  = 128;                                         % Cyclic prefix length
    N_DATA_SYMS             = N_OFDM_SYMS * length(SC_IND_DATA);           % Number of data symbols (one per data-bearing subcarrier per OFDM symbol)
    
    channel_coding = .5;                                                   % coding rate
    trellis_end_length = 8;                                                % bits for trellis to end
      
    v_c                     = 299792458;                                   %light speed (m/s)
    SC_spacing              = 5.165625e6;                                  %sub-carrier spacing(Hz)
    center_freq             = 60e9;                                        %center frequency
    symbol_time             = 1/SC_spacing;                                %duration of 1 OFDM symbol
    sample_time             = symbol_time/N_SC;                            %duration of 1 sample
    
    pck_interval            = 200e-6;                                      %interval between two packets
    sample_interval         = ceil(pck_interval/sample_time);              %number of samples between two packets
    
    distance_real           = zeros(1,total_num_est);                      %record the real distance of each measurement
    distance_esti           = zeros(1,total_num_est);                      %record the estimate distance of each measurement
    ant_est_velo            = zeros(1,total_num_est);                      %record the estimate antenna velocity of each measurement 
        ant_est_velo(1,1)   = v_ant;                                       %initial the estimation as the true speed
    gridx_real              = zeros(1,total_num_est);                      %record the real x position of the object
    gridy_real              = zeros(1,total_num_est);                      %record the real y position of the object
    alpha_est_list          = zeros(1,total_num_est);                      %record the estiamte AoA of each measurement
    alpha_real_list         = zeros(1,total_num_est);                      %record the real AoA of each measurement 
    est_pktwindow           = 30;                                          %do the measurement after every 'est_pktwindow' number of packets
    num_est                 = 0; 
    
    obj_mov_ppkt            = pck_interval*v_obj;
    for t = 1:total_num_est*est_pktwindow
        if mod(t,est_pktwindow) == 0
            disp([ '    creating signal t = ' num2str(t)]);
        end
        
        %update the start index of time, sample and position of object
        time_start         = (t-1)*pck_interval+1;
        sample_start       = (t-1)*sample_interval+1;
        x_obj              = x_obj+v_obj*pck_interval;                     %new x location of object
        y_ant              = y_ant+v_ant*pck_interval;                     %new y location of antenna
        
        %periodically measurement
        if mod(t,est_pktwindow)>( 2+num_avgpkt) || mod(t,est_pktwindow) == 0
            %do nothing 
        else
            
            if mod(t,est_pktwindow) == 3
                num_est = num_est+1;
                distance_real(1,num_est) = sqrt(x_obj^2+y_ant^2);
            end          
            %% Preamble
            if mod(t,est_pktwindow) == 1
                H_tx2 = ones(1,N_SC);
                distance_avg = zeros(1,num_avgpkt);
                alpha_avg    = zeros(1,num_avgpkt);
                velo_avg     = zeros(1,num_avgpkt);
                num_avgpkt_i = 1;
            end
            % reference [802.11ad PHY]

            Ga_128_f_1 = [ 1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,...
                          -1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,...
                           1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,...
                           1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1];
            Gb_128_f_1 = [-1,-1, 1, 1, 1, 1, 1, 1, 1,-1, 1,-1,-1, 1, 1,-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,...
                           1, 1,-1,-1,-1,-1,-1,-1,-1, 1,-1, 1, 1,-1,-1, 1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,...
                           1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,...
                           1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1];
            Ga_128_t     = ifft(Ga_128_f_1,128);
            Ga_128_t_neg = ifft(-1*Ga_128_f_1,128);
            Gb_128_t     = ifft(Gb_128_f_1,128);
            Gb_128_t_neg = ifft(-1*Gb_128_f_1,128);
            
            Gv_512_f     = [-Gb_128_f_1,  Ga_128_f_1, -Gb_128_f_1, -Ga_128_f_1];
            Gu_512_f     = [-Gb_128_f_1, -Ga_128_f_1, Gb_128_f_1,  -Ga_128_f_1];
            
            %Nulling for preamble
            Gv_512_f_2   = H_tx2.*[-Gb_128_f_1,  Ga_128_f_1, -Gb_128_f_1, -Ga_128_f_1];
            Gu_512_f_2   = H_tx2.*[-Gb_128_f_1, -Ga_128_f_1, Gb_128_f_1,  -Ga_128_f_1];
            
            %Fourier transform of preamble from freq domain to time domain
            %first antenna
            Gv_512_t     = ifft(Gv_512_f,512);
            Gu_512_t     = ifft(Gu_512_f,512);
            %second antenna
            Gv_512_t_2   = ifft(Gv_512_f_2,512);
            Gu_512_t_2   = ifft(Gu_512_f_2,512);
            
            %produce preamble
            preamble_1   = [repmat(Ga_128_t, 1, 16)  Ga_128_t_neg Gv_512_t   Gu_512_t   Gb_128_t_neg];  %preamble for Tx1 
            preamble_2   = [repmat(Ga_128_t, 1, 16)  Ga_128_t_neg Gv_512_t_2 Gu_512_t_2 Gb_128_t_neg];  %preamble for Tx2
            
            %% Generate a payload of random integers
            number_of_bits = (N_DATA_SYMS * MOD_ORDER - 2*trellis_end_length) * channel_coding;
            tx_data = randi(2, 1, number_of_bits) - 1;

            % Forward Error Correction
            tx_data = double([tx_data zeros(1,trellis_end_length) ]);      % 8 bits padding
            trel = poly2trellis(7, [171 133]);                             % Define trellis
            tx_code = convenc(tx_data,trel);                               % convultional encoder
            
            % bits to signal space mapping these are your x_k from the class
            tx_syms = mapping(tx_code', MOD_ORDER, 1);
            
            if Detail_plot
                figure(1);
                scatter(real(tx_syms), imag(tx_syms),'filled');
                title(' Signal Space of transmitted bits');
                xlabel('I'); ylabel('Q');
                title('Tx data for 64QAM data set')
            end
            
            % Reshape the symbol vector to a matrix with one column per OFDM symbol,
            tx_syms_mat = reshape(tx_syms, length(SC_IND_DATA), N_OFDM_SYMS);
            
            % Define the pilot tone values as BPSK symbols
            pilots = [-1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1].';
            
            % Repeat the pilots across all OFDM symbols
            pilots_mat = repmat(pilots, 1, N_OFDM_SYMS);
            
            
            %% IFFT
            
            % Construct the IFFT input matrix
            ifft_in_mat = zeros(N_SC, N_OFDM_SYMS);
            
            % Insert the data and pilot values; other subcarriers will remain at 0
            ifft_in_mat(SC_IND_DATA, :)   = tx_syms_mat;
            ifft_in_mat(SC_IND_PILOTS, :) = pilots_mat;
            
            %Perform the IFFT --> frequency to time translation
            tx_payload_mat   = ifft(ifft_in_mat, N_SC, 1);                               %payload for Tx1 
            tx_payload_mat_2 = ifft(ifft_in_mat.*repmat(H_tx2',1,N_OFDM_SYMS), N_SC, 1); %payload for Tx2
            % Insert the cyclic prefix
            if(CP_LEN > 0)
                tx_cp = tx_payload_mat((end-CP_LEN+1 : end), :);
                tx_payload_mat = [tx_cp; tx_payload_mat];
                tx_cp_2 = tx_payload_mat_2((end-CP_LEN+1 : end), :);
                tx_payload_mat_2 = [tx_cp_2; tx_payload_mat_2];
            end
            
            % Reshape to a vector
            tx_payload_vec   = reshape(tx_payload_mat,   1, numel(tx_payload_mat));
            tx_payload_vec_2 = reshape(tx_payload_mat_2, 1, numel(tx_payload_mat_2));
            
            % Construct the full time-domain OFDM waveform
            tx_vec   = [preamble_1 tx_payload_vec];
            tx_vec_2 = [preamble_2 tx_payload_vec_2];
            
            %% Interpolate,
            if INTERPOLATE
                % Interpolation filter basically implements the DAC before transmission
                % On the receiver's end decimation is performed to implement the ADC
                
                % Define a half-band 2x interpolation filter response
                interp_filt2 = zeros(1,43);
                interp_filt2([1 3 5 7 9 11 13 15 17 19 21]) = [12 -32 72 -140 252 -422 682 -1086 1778 -3284 10364];
                interp_filt2([23 25 27 29 31 33 35 37 39 41 43]) = interp_filt2(fliplr([1 3 5 7 9 11 13 15 17 19 21]));
                interp_filt2(22) = 16384;
                interp_filt2 = interp_filt2./max(abs(interp_filt2));
                
                % Pad with zeros for transmission to deal with delay through the interpolation filter
                tx_vec_padded = [tx_vec, zeros(1, ceil(length(interp_filt2)/2))];
                tx_vec_2x = zeros(1, 2*numel(tx_vec_padded));
                tx_vec_2x(1:2:end) = tx_vec_padded;
                tx_vec_air = filter(interp_filt2, 1, tx_vec_2x);
                
                if Detail_plot
                    figure(2);
                    plot(abs(tx_vec_2x));
                    hold on;
                    plot(abs(tx_vec_air(22:end)));
                    xlim([20,50]);
                    title('Interpolation visualized');
                    xlabel('time'); ylabel('amplitude');
                    legend('y = pre filtering','y = post filtering')
                end
                % Scale the Tx vector to +/- 1, becasue ADC and DAC take samples input from
                % 1 to -1
                tx_vec_air = TX_SCALE .* tx_vec_air ./ max(abs(tx_vec_air));
                
                if Detail_plot
                    figure(3);
                    plot(db(abs(fftshift(fft(tx_vec_air)))));
                    %plot(db(abs(fftshift(fft(tx_vec_2x)))));
                    %xlim([20000,60000]); ylim([0,65]);
                    % in this plot, why do see four peaks?
                end
            else
                tx_vec_air   = tx_vec;
                tx_vec_air_2 = tx_vec_2;
            end
            %% This part of code is for simulating the wireless channel.
            
        %send to 2 transmitter:
            tx1_vec_air = tx_vec_air;
            tx2_vec_air = tx_vec_air_2;
            
        % AWGN:
            TRIGGER_OFFSET_TOL_NS   = 3000;        % Trigger time offset toleration between Tx and Rx that can be accomodated
            SAMP_FREQ               = 1/sample_time;        % Sampling frequency
            
            rx_vec_air_tx1 = [tx1_vec_air, zeros(1,ceil((TRIGGER_OFFSET_TOL_NS*1e-9) / (1/SAMP_FREQ)))];
            rx_vec_air_tx2 = [tx2_vec_air, zeros(1,ceil((TRIGGER_OFFSET_TOL_NS*1e-9) / (1/SAMP_FREQ)))];
            
        %add noise
            noise_power = var(rx_vec_air_tx1) * 10 ^(-snr/20);
            rx_vec_air_tx1 = rx_vec_air_tx1 + noise_power*complex(randn(1,length(rx_vec_air_tx1)), randn(1,length(rx_vec_air_tx1)));
            
            noise_power = var(rx_vec_air_tx2) * 10 ^(-snr/20);
            rx_vec_air_tx2 = rx_vec_air_tx2 + noise_power*complex(randn(1,length(rx_vec_air_tx2)), randn(1,length(rx_vec_air_tx2)));
            
        % Decimate %DAC in receiver
            if INTERPOLATE
                raw_rx_dec_tx1 = filter(interp_filt2, 1, rx_vec_air_tx1);
                raw_rx_dec_tx1 = [zeros(1,DETECTION_OFFSET) raw_rx_dec_tx1(1:2:end)];
                
                raw_rx_dec_tx2 = filter(interp_filt2, 1, rx_vec_air_tx2);
                raw_rx_dec_tx2 = [zeros(1,DETECTION_OFFSET) raw_rx_dec_tx2(1:2:end)];
            else
                raw_rx_dec_tx1 = rx_vec_air_tx1;
                raw_rx_dec_tx2 = rx_vec_air_tx2;
            end
            
        %create four paths and their delay, phase change, doppler
            %calculating distance
            tempa_1 = (-2*dis_ant-sqrt( 4*dis_ant^2 - 4*(1-v_c^2/v_ant^2)*(4*x_wall^2+dis_ant^2)  ))/2/(1-v_c^2/v_ant^2); %precise
            tempa_2 = (-2*dis_ant+sqrt( 4*dis_ant^2 - 4*(1-v_c^2/v_ant^2)*(4*x_wall^2+dis_ant^2)  ))/2/(1-v_c^2/v_ant^2); %precise
            distance_tx1wal = tempa_1*v_c/v_ant;
            distance_tx1obj = sqrt(x_obj^2+(y_ant-dis_ant)^2)+sqrt(x_obj^2+(y_ant-tempa_2)^2);
            distance_tx2wal = -tempa_2*v_c/v_ant;
            distance_tx2obj = sqrt(x_obj^2+(y_ant+dis_ant)^2)+sqrt(x_obj^2+(y_ant-tempa_2)^2);
            
            %calculating correspoding delay
            Delay_tx1wal = distance_tx1wal/v_c;
            Delay_tx1obj = distance_tx1obj/v_c;
            Delay_tx2wal = distance_tx2wal/v_c;
            Delay_tx2obj = distance_tx2obj/v_c;
            
            %calculating channel condition(phase shift)
            Phase_tx1wal = exp(1i*2*pi*distance_tx1wal*center_freq/v_c);
            Phase_tx1obj = exp(1i*2*pi*distance_tx1obj*center_freq/v_c);
            Phase_tx2wal = exp(1i*2*pi*distance_tx2wal*center_freq/v_c);
            Phase_tx2obj = exp(1i*2*pi*distance_tx2obj*center_freq/v_c);
            
            %attenuation according to distance
            Atten_tx1wal = 68.0630 + 20*log10(distance_tx1wal);%dB
            Atten_tx1obj_wal = 400*( thick_wall*abs( y_ant/x_obj ) )  ;%dB
            Atten_tx1obj_air = 68.0630 + 20*log10(distance_tx1obj-thick_wall*abs(y_ant/x_obj));%dB
            Atten_tx2wal = 68.0630 + 20*log10(distance_tx2wal);%dB
            Atten_tx2obj_wal = 400*( thick_wall*abs(y_ant/x_obj) ) ;%dB
            Atten_tx2obj_air = 68.0630 + 20*log10(distance_tx2obj-thick_wall*abs(y_ant/x_obj));%dB
            
            %Doppler effect(Frequece shift)
            theda_velo = atan(abs(v_ant/v_obj));
            theda_grid = atan(abs(y_ant/x_obj));
            theda_dopr = abs(theda_velo-theda_grid);
            doppler_FO = center_freq* sqrt( v_ant^2 + v_obj^2 )* cos(theda_dopr)/v_c ;
            
            %create 4 signals for each path
            raw_rx_dec_tx1wal = raw_rx_dec_tx1*Phase_tx1wal/sqrt( 10^(Atten_tx1wal/10) );
            raw_rx_dec_tx1obj = raw_rx_dec_tx1*Phase_tx1obj/sqrt( 10^((Atten_tx1obj_wal+Atten_tx1obj_air)/10) ).* exp(-1i*2*pi*doppler_FO*sample_time*[0:length(raw_rx_dec_tx1)-1]);
            raw_rx_dec_tx2wal = raw_rx_dec_tx2*Phase_tx2wal/sqrt( 10^(Atten_tx2wal/10) );
            raw_rx_dec_tx2obj = raw_rx_dec_tx2*Phase_tx2obj/sqrt( 10^((Atten_tx2obj_wal+Atten_tx2obj_air)/10) ).* exp(-1i*2*pi*doppler_FO*sample_time*[0:length(raw_rx_dec_tx2)-1]);

            %conbine all 4 reflected signal in reciver
            raw_rx_dec = 0;
            if mod(t,est_pktwindow) ~= 2 %at step 2, there is no signal from TX1 
                if showdetail
                    fprintf('t = %d , Wall Reflc-signal from Tx1 with ', t );
                end
                raw_rx_dec = form_raw_rx_dec(1,raw_rx_dec,Delay_tx1wal,sample_time,raw_rx_dec_tx1wal,center_freq,showdetail); % refleted signal from tx 1 to wall to Rx
                if showdetail
                    fprintf('t = %d , Objt Reflc-signal from Tx1 with ', t );
                end
                raw_rx_dec = form_raw_rx_dec(1,raw_rx_dec,Delay_tx1obj,sample_time,raw_rx_dec_tx1obj,center_freq,showdetail); % refleted signal from tx 1 to object to Rx
            end
            if mod(t,est_pktwindow) ~= 1 %at step 1, there is no signal from TX2 
                if showdetail
                    fprintf('t = %d , Wall Reflc-signal from Tx2 with ', t );
                end
                raw_rx_dec = form_raw_rx_dec(1,raw_rx_dec,Delay_tx2wal,sample_time,raw_rx_dec_tx2wal,center_freq,showdetail); % refleted signal from tx 2 to wall to Rx
                if showdetail
                    fprintf('t = %d , Objt Reflc-signal from Tx2 with ', t );
                end
                raw_rx_dec = form_raw_rx_dec(1,raw_rx_dec,Delay_tx2obj,sample_time,raw_rx_dec_tx2obj,center_freq,showdetail);
            end
            
            %% Reveiver Ends
            if mod(t,est_pktwindow) == 1 || mod(t,est_pktwindow) == 2  %step 1 and step 2
            %packet detection
                lts_corr = abs(conv(conj(fliplr(Ga_128_t)), sign(raw_rx_dec)));
                lts_corr = lts_corr(32:end-32);
                LTS_CORR_THRESH=.8;
                lts_peaks = find(lts_corr > LTS_CORR_THRESH*max(lts_corr));
                [LTS1, LTS2] = meshgrid(lts_peaks,lts_peaks);
                [lts_last_peak_index,y] = find(LTS2-LTS1 == length(Ga_128_t));

                channel_training_ind = lts_peaks(max(lts_last_peak_index)) + 128/2;
                payload_ind = lts_peaks(max(lts_last_peak_index)) + 128/2 + 9*128;
                
            %CFO
                Ga_128_t_start_ind = min(max( lts_peaks(max(lts_last_peak_index)) - 16.5*128,1),length(raw_rx_dec)-16.5*128);
                rx_Ga_128_t = raw_rx_dec(Ga_128_t_start_ind:Ga_128_t_start_ind+16.5*128-1);
                rx_cfo_est = zeros(1,15);
                for iGa = 1:15
                    rx_Ga_128_1 = rx_Ga_128_t(1+(iGa-1)*128:iGa*128);
                    rx_Ga_128_2 = rx_Ga_128_t(1+iGa*128:(iGa+1)*128);
                    rx_cfo_est(1,iGa) = mean(unwrap(angle(rx_Ga_128_2 .* conj(rx_Ga_128_1))));
                    rx_cfo_est(1,iGa) = rx_cfo_est(1,iGa)/(2*pi*128);
                end
                rx_cfo_est_final = mean(rx_cfo_est);
                
                rx_cfo_corr_t = exp(-1i*2*pi*rx_cfo_est_final*[0:length(raw_rx_dec)-1]);
                rx_dec_cfo_corr = raw_rx_dec .* rx_cfo_corr_t;
                
            % channel estimation:
                Gv512_ind_start = channel_training_ind ;
                Gv512_ind_end   = channel_training_ind + 512 - 1;
                Gu512_ind_start = channel_training_ind + 512;
                Gu512_ind_end   = channel_training_ind + 512*2 - 1;
                
                rx_Gv512 = raw_rx_dec(Gv512_ind_start:Gv512_ind_end);
                rx_Gu512 = raw_rx_dec(Gu512_ind_start:Gu512_ind_end);
                
                rx_Gv512_f = fft(rx_Gv512);
                rx_Gu512_f = fft(rx_Gu512);
                
                H_vest = rx_Gv512_f./Gv_512_f;
                H_uest = rx_Gu512_f./Gu_512_f;
                H_est   = ( H_vest+H_uest )/2;
                if mod(t,est_pktwindow) == 1
                    H_1 = H_est;
                else
                    H_tx2 = - H_1./H_est;
                end
                lts_corr = abs(conv(conj(fliplr(Gu_512_t)), sign(raw_rx_dec)));
                lts_corr = lts_corr(32:end-32);
                LTS_CORR_THRESH=.8;
                lts_peaks = find(lts_corr > LTS_CORR_THRESH*max(lts_corr));
                
            else %mod(t,num_avgpkt) == 0 || 3~6: step 3
            %% start extract object information
            %packet detection
                corr_target = [ Gv_512_t, Gu_512_t];
                lts_corr = abs(conv(conj(fliplr(corr_target)), sign(raw_rx_dec)));
                lts_corr = lts_corr(32:end-32);
                LTS_CORR_THRESH=.8;
                [~,lts_peaks] = max(lts_corr);
                
                %ToF estimation
                D_3 = lts_peaks-128*17-1024+32 ;
                distance_avg(num_avgpkt_i) = D_3*sample_time*v_c/2;
                %average smoothing
                if num_avgpkt_i == 5
                   distance_esti(1,num_est) = mean(distance_avg) ;
                end
                if showdetail
                    disp(['OBJT delay estimation = ' num2str(D_3)]);
                end
                
            %CFO estimation:
                Ga_128_t_start_ind = min ( max(lts_peaks-1024 -128*17,1), length(raw_rx_dec) - 16*128 +1) ;
                rx_Ga_128_t = raw_rx_dec(Ga_128_t_start_ind:Ga_128_t_start_ind+16*128-1);
                rx_cfo_est = zeros(1,15);
                for iGa = 1:15
                    rx_Ga_128_1 = rx_Ga_128_t(1+(iGa-1)*128:iGa*128);
                    rx_Ga_128_2 = rx_Ga_128_t(1+iGa*128:(iGa+1)*128);
                    rx_cfo_est(1,iGa) = mean(unwrap(angle(rx_Ga_128_2 .* conj(rx_Ga_128_1))));
                    rx_cfo_est(1,iGa) = rx_cfo_est(1,iGa)/(2*pi*128);
                end
                rx_cfo_est_final = mean(rx_cfo_est);
                %antenna speed estimation 
                CFO_v_estimate = -rx_cfo_est_final/sample_time*v_c/center_freq;
                if CFO_v_estimate-v_ant>100 || CFO_v_estimate<0
                    velo_avg(num_avgpkt_i) = ant_est_velo(1,max( num_est-1, 1));
                else
                    velo_avg(num_avgpkt_i) = CFO_v_estimate;
                end
                %average smoothing
                if num_avgpkt_i == 5
                   ant_est_velo(1,num_est) = mean(velo_avg) ;
                end
                
                %derive h: function for theda estimation
                rx_cfo_corr_t = exp(-1i*2*pi*rx_cfo_est_final*[2176-1:2176+length(corr_target)-2]);
                Gv_gin_idx = min( max( lts_peaks-512, 1) , length(raw_rx_dec) -1024 );
                rx_dec_cfo_corr = raw_rx_dec(Gv_gin_idx:Gv_gin_idx+1024-1).*rx_cfo_corr_t;
                
            %AoA estimation
                v_est_walker = sqrt(100+v_obj^2);   %m/s
                lambda = v_c/center_freq;           % wavelength
                delta = v_est_walker * sample_time; % spatial separation between successive antennas in the array
                % (twice the one-way separation to account for the round-trip time)
                Length_window = 15;
                
                yy = rx_dec_cfo_corr;
                xx = corr_target;
                Length_N = length(yy);
                hh = fft(yy)./fft(xx);               
                A = zeros(19, Length_N);
                A_max_ind = zeros(1, Length_N);
                A_temp = zeros(1, Length_N);
                theta_est = zeros(1, Length_N);
                
                for n = 1:(Length_N-Length_window)
                    
                    for theta = (-pi/2):pi/18:(pi/2)
                        
                        theta_index = round((theta+pi/2)/(pi/18)+1);
                        
                        for i0 = 1:Length_window
                            A(theta_index,n) = A(theta_index,n) + hh(n+i0)*exp(1j*2*pi/lambda*i0*delta*sin(theta));
                        end
                        
                    end
                    [ A_temp(n), A_max_ind(n)] = max(abs(A(:,n)));
                    
                    if A_max_ind(n)==1||A_max_ind(n)==19
                        theta_est(n)=0;
                    else
                        theta_est(n) = (A_max_ind(n)-1)*(pi/18)-(pi/2);
                    end
                    
                end
                
                theta_est_max = max(abs(theta_est)); 
                alpha_real = atan(abs(y_ant)/(x_obj));
                beta_real = atan(v_obj/v_ant);
                
                alpha_est = theta_est_max - beta_real;

                alpha_real_list(1,num_est) = alpha_real;
                gridx_real(1,num_est) = x_obj;
                gridy_real(1,num_est) = y_ant;
                alpha_avg(num_avgpkt_i) = alpha_est;
                if num_avgpkt_i == 5
                   alpha_est_list(1,num_est) = mean(alpha_avg) ;
                end
                num_avgpkt_i = num_avgpkt_i +1;
            end
        end%end of if
    end%end of for
    %% plot

    smooth_window = 20;
    pkt_timex = 3:est_pktwindow:length(distance_esti)*est_pktwindow;
    distance_esti_smooth = distance_esti;
    alpha_est_list_smooth = alpha_est_list;
    ant_est_velo_smooth = ant_est_velo;
    for i = 1:length(distance_esti_smooth)
        if  distance_esti_smooth(i)>100
            distance_esti_smooth(i) = distance_esti_smooth(max( i - 1, 1 ));
        else
            %distance_esti_smooth(i) = mean( distance_esti_smooth( max( i - smooth_window, 1 ) : i ) );
        end
        if  abs(alpha_est_list_smooth(i)-alpha_est_list_smooth(max(i-1,1)))/alpha_est_list_smooth(max(i-1,1)) > 10
            alpha_est_list_smooth(i) =  mean( alpha_est_list_smooth( max( i - smooth_window, 1 ) :  max( i - 1, 1 )  ) );
        else
            alpha_est_list_smooth(i) =  mean( alpha_est_list_smooth( max( i - smooth_window, 1 ) : i ) );
        end
        if ant_est_velo_smooth(i) > 500
            ant_est_velo_smooth(i) = ant_est_velo_smooth(max(i-1,1));
        else
            ant_est_velo_smooth(i) = mean( ant_est_velo_smooth( max(i-smooth_window,1): max( i - 1, 1 )));
        end
    end
    ant_mov_ppkt_r = pck_interval*v_ant;
    ant_mov_ppkt = pck_interval*ant_est_velo_smooth;%ant_est_veloc_record
    obj_est_gridx = distance_esti_smooth.*cos(alpha_est_list_smooth);
    %obj_est_gridy = distance_esti_smooth.*sin(alpha_est_list_smooth);
    obj_est_gridy = distance_esti_smooth.*sin(alpha_est_list_smooth) + ant_mov_ppkt.*pkt_timex;
    gridy_real_cali = abs( gridy_real ) + ant_mov_ppkt_r.*pkt_timex ;
    c = linspace(1,10,length(obj_est_gridx));
    K = ant_mov_ppkt.*pkt_timex;
    
    ant_est_veloc_record(snr_i,:) = ant_est_velo_smooth;
    obj_est_gridx_record(snr_i,:) = obj_est_gridx;
    obj_est_gridy_record(snr_i,:) = obj_est_gridy;

    x = 1:length(distance_real);
    figure(10+snr_i)
    plot(x,distance_real,x,distance_esti_smooth);
    title(['SNR = ' num2str(snr) ' db']);
    xlabel('time(packet)');
    ylabel('distance');
  
    figure(20+snr_i)
    scatter(obj_est_gridx,obj_est_gridy,[],c);
    hold;
    scatter(gridx_real,gridy_real_cali);
    title(['SNR = ' num2str(snr) ' db']);
    xlim([0,5]);
    ylim([0,20]);
    xlabel('m');
    ylabel('m');
    figure(30+snr_i)
    title(['SNR = ' num2str(snr) ' db']);
    plot(x,alpha_real_list,x,alpha_est_list);
    xlabel('time(packet)');
    ylabel('theda');
end